
Land Economics • November 2020 • 96 (4): 478–492
ISSN 0023-7639; E-ISSN 1543-8325
© 2020 by the Board of Regents of the
University of Wisconsin System

S  Appendix materials are freely available at http://le.uwpress.org and via the links in the electronic version of 
this article.

478

An Integrated Assessment Model for Valuing Water 
Quality Changes in the United States S

Joel Corona Economist, U.S. Environmental Protection Agency, Office of Water, Washington, D.C.;  
corona.joel@epa.gov 

Todd Doley Economist, U.S. Environmental Protection Agency, Office of Water, Washington, D.C.;  
doley.todd@epa.gov

Charles Griffiths Economist, U.S. Environmental Protection Agency, National Center for Environmental 
Economics, Washington, D.C.; griffiths.charles@epa.gov 

Matthew Massey Economist, U.S. Environmental Protection Agency, National Center for Environmental 
Economics, Washington, D.C.; massey.matt@epa.gov 

Chris Moore Economist, U.S. Environmental Protection Agency, National Center for Environmental 
Economics, Washington, D.C.; moore.chris@epa.gov 

Stephen Muela ORISE Participant Oak Ridge Institute for Science and Education (ORISE) with U.S. 
Environmental Protection Agency, Office of Water, Washington, D.C.; muela.stephen@epa.gov 

Brenda Rashleigh Biologist, U.S. Environmental Protection Agency, Office of Research and Development, 
Narragansett, Rhode Island; rashleigh.brenda@epa.gov 

William Wheeler Economist, U.S. Environmental Protection Agency, National Center for Environmental 
Economics, Washington, D.C.; wheeler.william@epa.gov 

Stephen D. Whitlock Environmental engineer, U.S. Environmental Protection Agency, Office of Water, 
Washington, D.C.; whitlock.steve@epa.gov 

Julie Hewitt Associate director for economics, U.S. Environmental Protection Agency, Office of Water, 
Washington, D.C.; hewitt.julie@epa.gov

ABSTRACT The U.S. Environmental Protection 
Agency (EPA) often requires expertise from envi-
ronmental assessors, hydrologists, economists, 
and others to analyze the benefits of regional 
and national policy decisions related to changes 
in water quality. This led the EPA to develop two 
models to form an integrated assessment mod-
el: HAWQS is a web-based water quantity and 
quality modeling system, and BenSPLASH is a 
modeling platform for quantifying the economic 
benefits of changes in water quality. This paper 
discusses the development of the component 
models and applies HAWQS and BenSPLASH to 
a case study in the Republican River basin. (JEL 
Q51, Q53)

1. Introduction

Integrated assessment models (IAMs) com-
bine natural processes and economic systems 

in a single modeling framework, and research 
on IAMs related to water quality requires col-
laborative input from both natural and social 
scientists (Keiser and Muller 2017). The U.S. 
Environmental Protection Agency (EPA) of-
ten requires expertise from environmental as-
sessors, hydrologists, economists, and others 
to analyze the benefits of regional and national 
policy decisions related to changes in water 
quality. However, full integration of hydro-
logic models and economic valuation has de-
veloped slowly in water regulation (Griffiths 
et al. 2012). This led the EPA to develop two 
integral components in a water quality IAM: 
(1) the Hydrologic and Water Quality System 
(HAWQS), and (2) the Benefits Spatial Plat-
form for Aggregating Socioeconomics and 
H2O Quality (BenSPLASH). These two prod-
ucts bring together national data layers and 
modeling capability that will allow the EPA, 
academia, states, and others to perform large, 
integrated analyses related to water quality 
impacts and provide a streamlined workflow 
for anyone interested in this sort of analysis. 
While the models are designed to work in 
series, they do not rely exclusively on each 
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other, allowing analysts to use either model 
independently. This paper describes the water 
quality and valuation capabilities of the linked 
HAWQS-BenSPLASH system and provides 
an applied example at the regional level.

HAWQS is a web-based interactive wa-
ter quantity and quality modeling system 
that employs as its core modeling engine the 
Soil and Water Assessment Tool (SWAT). 
HAWQS contains preloaded input data and 
simulates the effects of management practices 
based on an extensive array of crops, soils, 
natural vegetation types, land uses, and other 
scenarios for hydrology and the following wa-
ter quality parameters: sediment, pathogens, 
nutrients, biochemical oxygen demand, dis-
solved oxygen, pesticides, and water tempera-
ture. Simulations can be executed and stored 
on the web servers, thus minimizing personal 
computing requirements. The models can 
also be downloaded to local computers if de-
sired. While the goal is to precalibrate all of 
the watersheds in the United States, currently 
two calibration projects have been completed, 
with about 30% of eight-digit hydrologic unit 
code (HUC-8) watersheds in the United States 
calibrated and about 25% of four-digit HUCs 
calibrated (U.S. EPA 2017a; 2017b). HAWQS 
is configured with all required input data and 
default model parameters to make setting up 
and running the model as simple as possible. 
Outside of the calibrated watersheds, data may 
need to be adjusted to accurately represent lo-
cal conditions, and experienced modelers may 
have data and wish to calibrate watersheds at 
a higher resolution within the HAWQS cali-
brated watersheds.1

BenSPLASH modeling platform is de-
signed to quantify the economic benefits of 
water quality improvements to the nation’s 
freshwater rivers and streams. The primary 
analytical approach uses water quality in-
put data to spatially assign a relationship to 
a population located in proximity to the wa-
terbodies of interest. BenSPLASH converts 
multiple water quality parameters into a sin-

1 See the Appendix for current HAWQS watersheds cal-
ibrated as of March 2020. The developers are continuing 
to calibrate additional watersheds. In addition, a future 
HAWQS enhancement will allow modelers to upload SWAT 
watershed models (originally created in HAWQS) back into 
HAWQS once they have added more refined data.

gle-valued water quality index (WQI) and 
then calculates household willingness to pay 
(WTP) through a previously estimated val-
uation function. The current version of the 
model relies on a metaregression valuation 
function using demographic data originat-
ing at the census block group level, but Ben - 
SPLASH is structured so that additional val-
uation functions can be integrated as they be-
come available. 

Newbold, Simpson, et al. (2018a, 469) 
noted the need for “a general purpose in-
tegrated framework that combines a com-
prehensive set of bio-physical models and 
observations of ambient environmental qual-
ity with data on consumer expenditures and 
preferences that could produce estimates of 
benefits on a timely basis for new regulations 
as they are taking shape.” Model linkages are 
often the weak point in an analysis. Ideally, 
an integrated model would trace the links 
from water quality impacts to ecosystem ser-
vices to valuation of those services, whereas 
our models go directly from water quality to 
valuations of improvements in water quality. 
The complicated interactions depicted by 
Keeler et al. (2012) continue to be difficult to 
model in an integrated manner, let alone at a 
national scale. We view the current HAWQS/
BenSPLASH effort as a stepping stone and 
part of the EPA’s continued efforts to improve 
its ability to value water quality benefit-cost 
analysis (see Griffiths et al. 2012).2

This paper applies HAWQS and Ben-
SPLASH to a case study in the Republican 
River basin. In addition to demonstrating the 
ability to use the two models together, the case 
study highlights the ability to test sensitivity 
of the results to a variety of assumptions, in-
cluding extent of the market and scale of the 
stream network. Advantages of HAWQS in-
clude faster, more efficient, less costly mod-
eling (e.g., reduces repeated studies), open-
source architecture to promote transparency, 
and unbiased transboundary water informa-
tion. The BenSPLASH modeling platform in-

2 As models of changes in ecosystem services as a func-
tion of water quality and valuation models based on changes 
in those ecosystem services become available, it will be pos-
sible to include them directly into future versions of BenS-
PLASH.

by
 g

ue
st

 o
n 

A
pr

il 
9,

 2
02

4.
 C

op
yr

ig
ht

 2
02

0
D

ow
nl

oa
de

d 
fr

om
 

https://uwpress.wisc.edu/journals/pdfs/LE-96-4-02-Corona-app.pdf


Land Economics480 November 2020

corporates rasterization for fast and efficient 
estimation, provides the analyst with a variety 
of modeling options, and will be able to collect 
different complementary or competing ben-
efits approaches in one place. An advantage 
of starting with the current approach is that 
it is based on established datasets (National 
Land Cover Database, U.S. Census, NHDv2) 
and widely used tools (e.g., WQI, metaregres-
sion). Taken together, the integrated use of 
HAWQS and BenSPLASH can support bene-
fits assessment at national, regional, state, and 
local scales down to HUC-12. HAWQS is a 
publicly available model (U.S. EPA 2017a), 
while BenSPLASH is not publicly available 
yet. We used a prototype of BenSPLASH for 
this analysis and continue to work on impor-
tant modifications before making the model 
publicly available.

2. Model Overview and Structure 

Model Overview 

The EPA often estimates the benefits of sur-
face water quality improvements pursuant to 
Executive Orders 12866 and 13563,3 guided 
by the Office of Management and Budget’s 
Circular A-4 on Regulatory analysis and 
EPA’s Guidelines for Preparing Economics 
Analyses (U.S. EPA 2010), which require 
methods to be transparent and reproducible. 
Building BenSPLASH began with a recogni-
tion of the need for a faster, more efficient, and 
replicable valuation capability for the EPA to 
analyze the monetary benefits of water quality 
improvements. In order to prioritize aspects of 
BenSPLASH’s development, the project team 
gathered “user stories” (use cases) from over a 
dozen economists and water quality experts.4 
Based on the user stories, the project team de-
cided to focus initial efforts on analyses that 
are potentially national in scope, using data 
sources that are nationally consistent. 

3 Regulatory Planning and Review, and Improving Regu-
lation and Regulatory Review, respectively.

4 A user story is in the following format: “As a [blank], 
I want to be able to [blank].” An example user story is “As 
a water quality modeler, I want water quality model output 
sufficiently detailed so that whether particular designated 
uses are met can be estimated.”

When using an existing water quality 
model, often the main effort is devoted to 
preparing policy- and location-specific model 
inputs rather than running the model. To gen-
erate modeling efficiencies in the short run, 
we put emphasis on gathering and including 
information that has traditionally been re-
quired to estimate benefits. Long-run devel-
opment focuses on modularity and flexibil-
ity so that future capabilities can be added 
without a complete overhaul of the modeling 
framework. The EPA plans to make Ben-
SPLASH available to the public via an open 
source framework so that others may suggest 
improvements or assess their own policy or 
counterfactual scenarios. 

HAWQS enables use of SWAT and is used 
to simulate the effects of management prac-
tices based on an extensive array of crops, 
soils, natural vegetation types, land uses, and 
climate change scenarios for hydrology and 
the following water quality parameters: sedi-
ment, pathogens, nutrients, biological oxygen 
demand, dissolved oxygen, pesticides, and 
water temperature. BenSPLASH is a model 
for calculating the benefits of surface water 
quality improvements in the conterminous 
United States.5 The main user-supplied inputs 
to BenSPLASH are pre- and postscenario 
measures of water quality for each water-
body expected to improve due to a regulation 
or policy, either in the form of water quality 
parameter concentrations or WQI values. To 
complement the user-supplied inputs, other 
information is included in the model, such as 
waterbody-specific information and U.S. Cen-
sus data at the census block group level. All 
input data are rasterized by BenSPLASH into 
a national data grid to improve the computa-
tional efficiency of the model.6 Each grid cell 

5 Hereafter, we use the term “national” as shorthand for 
the conterminous United States.

6 Because the location of any grid cell can be expressed 
by a Cartesian (x,y) address, spatial calculations (distances, 
overlaps) in a grid system are very efficient. With vector 
data, spatial calculations are done using topological opera-
tions (e.g., unions, intersections), and processing time can be 
prohibitive, especially when accounting for double-count-
ing. In some cases, computer memory issues may make 
calculations impossible. Vector data are more accurate for 
shapes with irregular boundaries or single points, but be-
cause spatial calculations in geographic information systems 
are so slow, analytics using vector data often use shortcuts, 
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is then treated as a representative household 
when applying the valuation functions for 
water quality improvements within a speci-
fied radius of the grid cell centroid. The main 
outputs of BenSPLASH are marginal WTP 
per household by grid cell, total WTP by grid 
cell, and total U.S. WTP. Figure 1 provides 
a general schematic of the linked HAWQS- 
BenSPLASH system. 

The HAWQS and BenSPLASH models 
work in series to estimate economic benefits 
from management practices affecting water 
quality. Here we describe the components of 
the models and the intermediate outputs that 

such as representing an irregular shape by its approximate 
centroid. The accuracy of a raster rendering depends on the 
size of the grid cells. We explore the benefits of this trade-off 
by carrying the size of the grid cells and find that smaller 
grid cells do not measurably improve precision in this ap-
plication. 

are generated, serving as inputs to the subse-
quent steps in the simulation. 

Water Quality Modeling 

HAWQS is a web-based interactive hydrology 
and water quality modeling system that runs 
SWAT as the core model code. HAWQS in-
cludes a user interface to allow selection of 
watersheds and then automatically builds a 
modeling project with all input data required 
for SWAT at HUC-8, HUC-10, and HUC-
12 scales. Users have the choice to execute 
HAWQS simulations on the remote server 
or to download configured SWAT models to 
run on a local machine. HAWQS provides an 
output interface that includes tables, charts, 
graphs, maps, and raw data. HAWQS is a 
complete modeling system in that it includes 
a user guide, online model development, exe-

Figure 1
Flowchart of Integrated Modeling Structure
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cution, output processing, and storage of each 
user’s modeling projects. Because HAWQS is 
run entirely on a server, personal computing 
requirements are minimal (U.S. EPA 2017a). 
Yuan et al. (2018) provide an example of the 
use of HAWQS within a multimodel system.

HAWQS inputs come from a number of 
well-known national-level datasets for hydrol-
ogy, land use, soils, crops, and weather data. 
Within the model, weather data including pre-
cipitation and air temperature are from the Pa-
rameter Elevation Regression on Independent 
Slopes Model (PRISM) from 1981 to 2015. 
The HAWQS model uses the PET-Hargrave 
function built into SWAT 670 to model poten-
tial evapotranspiration. National land cover 
data and soil characteristics are taken from the 
2006 National Land Cover Database Land Use 
and Land Cover and State Soil Geographic da-
tabases, respectively. Crop data come from the 
USDA’s Cropland Data Layer, supplemented 
with additional fertilizer and management data 
from the National Agricultural Statistics Sur-
vey according to the methodology laid out by 
White et al. (2016). All of these datasets as 
well as the elevation and hydrology data have 
been preprocessed to increase the efficiency of 
HAWQS model setup. Experienced modelers 
who wish to modify the input data with their 
own localized data may do so by downloading 
HAWQS watershed models to SWAT, thereby 
benefiting from their particular SWAT code 
while still saving substantial time setting up 
SWAT watersheds.7 

HAWQS simulates both the land phase 
and the routing phase of the hydrologic cy-
cle. Based on the input precipitation data, 
HAWQS simulates the amount of water en-
tering surface runoff, infiltration into the soil, 
percolation to the underlying shallow and deep 
aquifer, and evapotranspiration. HAWQS also 
simulates flow detention and sediment and nu-
trient settling due to the ponds and wetlands 
located in the watershed. The water quality as-
sociated with these flow components is simu-

7 Anecdotally, experienced SWAT users go from setting 
up a watershed in two weeks to setting one up in a few hours. 
Plans for HAWQS 2.0 also include the ability to upload 
modified SWAT watersheds back into HAWQS, allowing 
modelers to share and run models remotely. A full descrip-
tion of the input data can be found at https://hawqs.tamu.
edu/content/docs/HAWQS-Input-Database-Citation.pdf.

lated based on the modified universal soil loss 
equation, input fertilizer application rates, 
crop and plant types, input point source flows 
and loads, and active management practices. 
This includes the movement and transforma-
tion of nitrogen and phosphorus in the water-
shed due to plant growth and soil properties. 
HAWQS determines the flow and water qual-
ity loads entering the main channel of each 
subbasin and routes these through the chan-
nel to the next downstream channel. For this 
application of HAWQS, flow is routed using 
SWAT’s variable storage coefficient method, 
and sediment is routed according to SWAT’s 
simplified Bagnold equation. HAWQS does 
not currently have the ability to simulate the 
effects of reservoirs, and so these effects are 
not included in this project. However, the un-
derlying SWAT model does include options 
for modeling flow and simplified water qual-
ity in reservoirs (Neitsch et al. 2011).

Water Quality Index 

The current version of BenSPLASH uses a 
WQI to value the changes in water quality pa-
rameters provided by HAWQS.8 Use of a WQI 
requires translating observed or simulated wa-
ter quality parameter values into subindex val-
ues ranging from 0 to 100 and then aggregating 
those subindex values into a single value, also 
bounded by 0 and 100 (Walsh and Wheeler 
2013). The WQI values serve as the link be-
tween the HAWQS model and the valuation 
exercise performed in BenSPLASH, maintain-
ing the spatial representation by generating a 
single value for each geo-tagged hydrological 
unit. The WQI module in BenSPLASH allows 
for a six-parameter weighted WQI used in past 
EPA regulations (e.g., U.S. EPA 2009).9 

WQI subindex curves were originally ap-
plied in an economic context by Vaughan 
(1986), who calculated WQI scores for the 

8 Future versions of BenSPLASH are planned to incorpo-
rate additional valuation methodologies that rely directly on 
observed or simulated water quality parameters.

9 The six-parameter WQI used in this study consists of 
DO, TN, TP, FC, TSS, and BOD. BenSPLASH also includes 
an equally weighted seven-parameter version used in the 
EPA’s 2015 Steam Electric Effluent Limitation Guideline 
(U.S. EPA 2015), which adds an additional subindex for 
metals.
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parameter values necessary to achieve desig-
nated uses of water (e.g., fishable and swim-
mable). The resulting WQI values were then 
used to construct the water quality ladder 
that has been widely used in valuation. The 
WQI employed in BenSPLASH uses subin-
dex curves developed more recently. National 
subindexes for dissolved oxygen (DO), fecal 
coliform (FC), and biochemical oxygen de-
mand (BOD) were developed by Dunnette 
(1979) and Cude (2001). The subindexes for 
total suspended solids (TSS), total nitrogen 
(TN), and total phosphorus (TP) are based on 
an ecoregion-specific approach developed by 
Cude (2001). These subindexes are combined 
as a weighted geometric mean to generate the 
single-valued WQI.10 

BenSPLASH uses the U.S. Geological Sur-
vey’s National Hydrography Dataset (NHD) 
stream reaches as the primary hydrologic unit 
of analysis. Each NHD stream reach has a 
unique identifier referred to as a COMID, and 
each COMID must have an associated WQI 
measure for BenSPLASH to generate results. 
BenSPLASH can use hydrologic data with 
existing WQI scores. If the scores are calcu-
lated at a different scale than the COMID, 
such as the HUC-12 scale, BenSPLASH 
will translate the scores to the corresponding 
 COMIDs. BenSPLASH can also be used to 
convert output from HAWQS that reports in-
dividual parameters into individual parameter 
subindex values and combine these individual 
parameter subindices into a single WQI value 
for each COMID. 

Valuation and Aggregation

The primary meta-analysis valuation func-
tions used in BenSPLASH capture geospatial 
factors rarely applied to benefits transfer and 
are derived in a utility theoretic framework to 
ensure consistency with the adding-up con-
dition. Diamond (1996) suggests a type of 
validity test based on an internal consistency 
condition that any WTP function should sat-
isfy. The WTP for a change from state 0 to 1 
conditional on baseline income plus the WTP 
for a change from state 1 to state 2 conditional 
on the income remaining after paying for the 

10 The platform can flexibly accept weights.

change from state 0 to state 1 must equal the 
WTP for a change from state 0 to 2 conditional 
on baseline income. This type of path-inde-
pendence is a basic requirement for internal 
consistency and may be viewed as a necessary 
condition for a valid benefit transfer function. 
The default household WTP function used by 
BenSPLASH is derived in a utility theoretic 
framework that satisfies Diamond’s adding-up 
criterion.11 

We can ensure that the WTP metafunction 
will comply with the adding-up condition by 
following a three-step procedure (Newbold, 
Walsh, et al. 2018). First, specify a Marshal-
lian inverse demand curve for environmental 
quality that includes income and the baseline 
quality level as arguments; second, derive a 
compatible indirect utility function; and third, 
derive from the indirect utility function the 
associated expenditure function. The differ-
ence in the expenditure function evaluated at 
the initial and final quality levels gives a total 
WTP function, which can then be used as the 
metaregression estimating equation. This pro-
cedure will guarantee that the WTP function 
will satisfy the adding-up condition along the 
quality dimension and account for the income 
effect. To implement this approach, begin 
with the following form for the Marshallian 
inverse demand function for water quality:  

β β β= + +i i iexp( ln ),H i Y Qwtp Y QH  [1]

where i indexes unique WTP estimates, wtpi is 
marginal WTP, Hi is a vector of demand shift-
ers including resource characteristics and design 
features of the primary study, Yi is the average 

11 WTP and other related stated preference issues continue 
to elicit lively debate, as evidenced in the Journal of Eco-
nomic Perspectives’ Symposium on Contingent Valuation 
(Kling, Phaneuf, and Zhao 2012; Carson 2012; Hausman 
2012) and subsequent responses. At its essence, the debate 
boils down to whether to put more weight on neoclassical 
economic theory, which people are sometimes observed to 
violate, or on enhancements to neoclassical theory that re-
solve observed behavior but lack a strict theoretical link to 
the underpinnings of benefit-cost analysis (see also Johnston 
et al. [2017] for recommendations related to the develop-
ment and use of stated preference studies). While the case 
study in this paper uses a meta-analysis based on WTP re-
sults from stated preference approaches, BenSPLASH de-
velopers are incorporating other valuation methods as well, 
such as hedonic pricing, recreation demand, cost of illness, 
and other human health approaches.
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income of the survey respondents, Qi is the 
WQI level for observation i, and βH, βY, and 
βQ are parameters estimated via metaregression. 

See Newbold, Walsh, et al. (2018), equations 9 
through 13, for the complete derivation leading 
to the estimating equation for total WTP,

ββ β β β ββ
β β β

−+ + −
  

= − − − +   −   
0 1

1
1

1
0 1 0

1 1 1
( , , ) (1 ,)

1

Y
H Q H Q YQ Q

Y
Q Q Y

WTP Q Q Y Y e e YH H  [2]

where, Q0 and Q1 refer to baseline and post-
policy water quality expressed in terms of 
WQI, and WTP is household WTP for that 
change. See Newbold, Walsh, et al. (2018) or 
the supplemental materials to this article for 
metaregression results. 

The metadata are drawn from primary 
stated preference valuation studies that esti-
mate per household (use and nonuse) WTP 
for water quality changes in U.S. water bod-
ies that affect ecosystem services including 
aquatic life support, recreational uses (such as 
fishing, boating, and swimming), and nonuse 
values.12 Necessary data includes information 
identifying affected water bodies, the extent 
of water quality change, and sampled market 
areas, along with core methodological attri-
butes. Studies are limited to those for which 
per household WTP estimates could be read-
ily linked to water quality changes measured 
on the standard 100-point WQI. The resulting 
metadata include 140 observations from 51 
stated preference studies conducted between 
1981 and 2011. Independent variables in the 
metadata characterize (1) study methodology 
and year, (2) region and surveyed populations, 
(3) sampled market areas and study site, (4) 
affected water bodies, and (5) water quality 
baseline and change.13

Demographic data are collected for cen-
sus block groups, the smallest geographical 
unit for which sample data are published. 
The U.S. Census Bureau provides the geom-
etry for each block in the Topologically Inte-
grated Geographic Encoding and Referencing 
geographic database that we use to rasterize 
demographic data into the national grid. The 
baseline water quality level Q0 and expected 

12 While we have chosen to value ecosystem services col-
lectively through a WQI, other studies (e.g., Lupi et al. 2019) 
approach environmental modeling and valuation separately 
for individual ecosystem services.

13 See U.S. EPA (2015, table H-1) for a list of the primary 
studies used to populate the metadata.

water quality under the policy option Q1 are 
based on water quality at waterbodies within 
a 160 km buffer of the centroid of each grid 
cell. A buffer of 160 km is consistent with Vis-
cusi, Huber, and Bell (2008) and with the as-
sumption that the majority of recreational day 
trips will occur within a two-hour drive from 
home. As a sensitivity analysis we also evalu-
ate a 100 km buffer.14 By focusing on a buffer 
around the grid cell as a unit of analysis, rather 
than buffers around affected waterbodies, 
each household is included in the assessment 
exactly once, eliminating the potential for 
double-counting of households. Total WTP is 
calculated for a representative household in 
each grid cell and then multiplied by the num-
ber of households in the cell. Total national 
WTP is calculated by summing across all grid 
cells that have at least one affected waterbody 
within 160 km of the centroid. 

With rare exceptions, theory suggests that 
transferred welfare estimates should be sen-
sitive to core economic factors including geo-
spatial scale (the geographical size of affected 
environmental resources or areas), market ex-
tent (the size of the market area over which 
WTP is estimated), and substitute availabil-
ity (the availability of proximate, unaffected 
substitutes) (Johnston, Besedin, and Stapler 
2017). The valuation metadata combine infor-
mation reported by primary studies with ex-
tensive geospatial data derived from external, 
spatially explicit databases. Results illustrate 

14 There is no consensus in the literature regarding the 
extent of distance decay of WTP. One of the few papers 
addressing incorporating distance decay in meta-analyses, 
by Johnston, Besedin, and Holland (2019) finds that envi-
ronmental improvements farther from respondents are asso-
ciated with lower WTP values. See also Choi, Ready, and 
Shortle (2020) for an example of a distance-weighted WQI. 
For the purposes of this demonstration of the BenSPLASH 
model we specify a 160 km limit on WTP for water quality 
changes as our main model and test a 100 km limit as a sen-
sitivity analysis.
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theoretically anticipated scale and substitu-
tion effects. 

3. Case Study: The Republican 
River Basin

This section illustrates the application of 
HAWQS and BenSPLASH under hypothet-
ical scenarios of water quality impacts for 
estimating the economic benefits from water 
quality improvements to river reaches in a rel-
atively small geographic area. The geographic 
area selected for the case study is the Repub-
lican River basin. The hypothetical scenario is 
meant to reflect the implementation of pollu-
tion control measures within this basin to ad-
dress water quality impairments.

The Republican River basin, shown in Fig-
ure 2, is a 4-digit HUC (1025) comprising 599 

12-digit HUCs. The Republican River basin 
encompasses approximately 25,000 square 
miles along the border of Nebraska and Kan-
sas, stretching into Colorado on the west and 
connecting with the Kansas River on the east. 
The watershed lies mainly within the High 
Plains and Central Great Plains ecoregions. 
The predominant water features in the basin 
are intermittent streams that flow into the 
larger perennial creeks and rivers. There are 
over 20 reservoirs along the length of the Re-
publican River and its tributaries, which sup-
ply water primarily for agriculture and munic-
ipal purposes. Based on geospatial analysis 
using the high-resolution NHD, there are over 
40,000 mapped miles of waters in this water-
shed.15

15 The Appendix contains additional information about 
the Republican River basin.

Figure 2
Map of Republican River Subbasins Showing Baseline and Counterfactual Scenario Water Quality

by
 g

ue
st

 o
n 

A
pr

il 
9,

 2
02

4.
 C

op
yr

ig
ht

 2
02

0
D

ow
nl

oa
de

d 
fr

om
 

https://uwpress.wisc.edu/journals/pdfs/LE-96-4-02-Corona-app.pdf


Land Economics486 November 2020

The land within the Republican River basin 
is used primarily for cropland; other uses in-
clude land for grazing, as well as oil and gas 
production. Most of the land within the basin 
is classified as rural, although there are urban 
clusters scattered throughout.16 The majority 
of the urban land is in the eastern portion of 
the basin, with the largest urban cluster, Junc-
tion City, located at the confluence of the Re-
publican and Kansas Rivers.

A significant portion of the assessed wa-
ters within the basin have been placed on the 
EPA’s CWA 303(d) List of Impaired Waters. 
Table 1 provides state tallies of basin waters 
impaired by different pollutants. Nutrients 
are the second most frequent cause for im-
pairment. Due to the rural nature of the basin, 
there are relatively few point sources located 
within the basin. A review of NPDES permits 
for point-source discharges found 375 total 
permits (113 individual and 262 general per-
mits), with 42 of these being for sewage treat-
ment plants. The predominance of agriculture 
within the watershed suggests it may be a key 
source of nutrient pollution, as well as patho-
gens and turbidity. 

We devised a “counterfactual” scenario 
with the intent of demonstrating HAWQS’s 
capabilities and not to demonstrate the effects 

16 The 2010 U.S. Census classifies urban areas as pop-
ulation centers with populations more than 2,500 inhabi-
tants. Urban clusters (UCs) have at least 2,500 and fewer 
than 50,000 people, while urbanized areas (UAs) consist of 
50,000 or more people.

of a program under current consideration. The 
scenario simulates the water quality effects 
due to applying best management practices 
(BMPs) to reduce stormwater and nutrients 
from agriculture. These BMPs include apply-
ing 25 meter-wide, vegetated filter strips on 
all agriculture lands and reducing impervious 
surface on urban lands by 25%. These BMPs 
are generally considered effective at reducing 
nutrients and may also help control other pol-
lution sources such as sediment.

Applying the vegetated filter strips to all 
agricultural land would result in approxi-
mately 795 km2, or 3% of total agricultural 
land, being taken out of production and de-
voted to filter strips. This scenario does not 
account for the instances in which the use of 
filter strips would not be feasible, nor does 
it account for any existing vegetated filter 
strips already in use. Applying impervious 
surface reduction to 25% of impervious areas 
results in 6.2 km2 of impervious surface be-
ing removed from urbanized areas within the 
basin. The extent of these two BMPs for the 
counterfactual scenario is ambitious and may 
not be realistic. For example, the EPA does 
not directly regulate the introduction of veg-
etated filter strips. These BMPs would likely 
be enacted by state or local authorities who 
might benefit from an IAM for water quality 
changes. However, for demonstrating how the 
HAWQS and BenSPLASH models could be 
used together to produce economic benefit es-
timates, the counterfactual scenario was inten-

Table 1
Number of Assessed Water Impairments within the Republican River Basin, by State

Cause of Impairment Colorado Kansas Nebraska Totals

Algal growth  4   4
Cause unknown; impaired biota  3  1   4
Fish consumption advisory  5   5
Metals (other than mercury) 43  2  45
Nutrients 36  8  44
Organic enrichment/oxygen depletion  3  8  11
Pathogens 2 25  27
Pesticides  1   1
pH/acidity/caustic conditions  1   1
Temperature  3   3
Turbidity 12  12
Totals 2 97 58 157

Source: U.S. Environmental Protection Agency, Office of Water 303(d) listing, accessed May 2015.
Note: Waters with multiple causes for impairment are counted more than once.
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tionally designed to produce sizable changes 
in water quality.

HAWQS was set up for the 12-digit HUC 
subbasins in the Republican River basin 
(HUC-1025) in the Missouri River region 
and run for a baseline scenario for existing 
conditions from 2006 to 2010. The HAWQS 
model had previously been calibrated for flow, 
sediment, TN, and TP at the pourpoint of the 
Republican River basin (U.S. EPA 2017a, 
2017b). HAWQS was used to calculate daily 
flows and loads for each subbasin, for both 
the baseline and counterfactual scenarios, and 
daily values were averaged over a five-year 
simulation period.

This example used the default six-parame-
ter WQI in BenSPLASH with default weight-
ing: FC, CFU/100 ml, weight 0.22; TSS, 
mg/L, weight 0.11; DO, mg/L, weight 0.24; 
BOD, mg/L, weight 0.15; TN, mg/L, weight 
0.14; and TP, mg/L, weight 0.14. HAWQS 
output was used for TSS, TN, and TP, and wa-
ter quality monitoring data were used for the 
three parameters FC, DO, and BOD, which 
were not part of the calibration for HAWQS; 
we obtained the monitoring data from the 
EPA Water Quality Portal.17 For the purposes 
of this analysis, the parameters FC, DO, and 
BOD remain constant between the baseline 
and counterfactual scenarios. It is important to 
include FC, DO, and BOD in the analysis be-
cause baseline WQI enters the valuation func-
tion estimated in the metaregression. Griffin 
et al. (2019) explores how omitted parameters 
impact model results. 

The baseline and counterfactual scenario 
subbasin WQI scores were used as inputs for 
BenSPLASH. BenSPLASH automatically as-
signs these subbasin-scale results to the more 
refined, NHD stream COMIDs. BenSPLASH 
is prepopulated with national census block 
group data, which contain the relevant house-
hold demographic information for estimating 
household WTP. Running BenSPLASH re-
quires selecting the grid size the model uses 
for rasterizing the water quality and demo-
graphic data. A trade-off exists between the 
coarseness chosen for a grid size (speed of 
model run) and the precision of the produced 
estimates. A coarser grid scale requires fewer 

17 See https://www.waterqualitydata.us/.

calculations but has less precision in the re-
sults for at least two reasons. First, the spatial 
units for the water quality and demographic 
data are irregular shapes, so approximating 
them with smaller grid cells will reduce er-
rors on their borders. Second, the analyst 
must select a distance from the centroid 
of each cell beyond which WTP for water 
quality improvements is zero (i.e., extent of 
market). Using smaller cells will produce a 
more accurate representation of distance for 
the households within each cell. For the Re-
publican River case study, BenSPLASH was 
run using a 7,290 m grid cell length and a 
160 km buffer for calculating market area. To 
test the sensitivity of model results to the grid 
size and buffer distance, two additional sce-
narios were considered: a smaller (2,430 m) 
grid cell size and a smaller (100 km) buffer 
distance. 

4. Case Study Results

Table 2 provides an estimate of the HAWQS 
model results, as mean, median, minimum, 
and maximum TN, TP, and sediment concen-
trations for the baseline and counterfactual 
scenarios. Focusing on the median measure, 
the predicted changes in concentrations for 
TSS, TN, and TP resulted in an improvement 
across the subbasins of 36%, 58%, and 40%, 
respectively. 

Table 2
Summary of HAWQS Model Output for Republican 

River Subbasins

TSS 
(mg/L)

TN 
(mg/L)

TP 
(mg/L)

Baseline scenario
 Meana 9.38 29.42 3.42
 Median 7.19 19.31 3.07
 Minimum 0.60 0.77 0.21
 Maximum 33.58 372.72 15.59
Counterfactual scenario
 Meana 7.27 8.91 1.91
 Median 4.58 8.19 1.85
 Minimum 0.47 0.42 0.14
 Maximum 32.66 52.28 5.69

Note: TN, total nitrogen; TP, total phosphorus; TSS, total sus-
pended solids.

a Mean values are based on an equal weighting of the HAWQS 
model results for the 599 HUC-12 subbasins.
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Figure 2 shows a graphical representation 
of the baseline and counterfactual WQI scores 
by subbasin. Table 3 provides a summary of 
the BenSPLASH annual WTP results for the 
three model runs, varying the grid cell size 
and the distance buffer radius. To perform 
comparisons across those two dimensions, 
we consider annual household, marginal, and 
total WTP. Household and marginal WTP es-
timates are stable across all three scenarios, 
showing that increasing the resolution of the 
model and constricting the extent of market 
do not impact WTP on the intensive margin. 
The radius of the buffer does have a substan-
tial impact on the total WTP, however, with 
the 160 km buffer producing an estimate about 
four times as large as the 100 km buffer. Given 
household WTP does not vary to that degree 
between buffer size, we can conclude this a 
result of more households being included in 
the aggregation, rather than households will-

ing to pay more for additional waters being 
improved. The difference in grid cell size does 
not appear to have a meaningful effect on to-
tal household WTP, but smaller grid cells take 
much longer to run, suggesting, at least in this 
application, the precision gain does not justify 
the additional cost of computing time.

Figure 3 shows the extent of the 100 km 
and 160 km buffers around the Republican 
River basin. The 100 km buffer includes 
422,000 households in several urbanized ar-
eas such as Topeka and Manhattan, Kansas, 
to the east and the eastern suburbs of Denver 
to the west. However, the 160 km buffer in-
cludes significantly more urbanized area, with 
2.3 million households. To the west it captures 
much of the Denver metropolitan area within 
the buffer and several smaller urbanized cen-
ters such as Colorado Springs, Boulder, and 
Fort Collins, Colorado. To the east the buffer 
extends to the western suburbs of Kansas City 

Table 3
Summary of BenSPLASH Model Output for the Republican River Basin

Buffer Grid Size Cells

WQI 
Baseline 
Scenario

WQI 
Counterfactual 

Scenario
WQI 
Delta

Annual 
MWTP per 
WQI Point 
(dollars)

Annual WTP 
(mean dollars 

per cell)

Total Annual 
WTP (millions 
of 2016 dollars)

160 km 7,290m 6,709 47.34 58.86 11.51 3.148 34.467 63.8
160 km 2,430m 56,730 47.39 59.06 11.68 3.153 35.089 62.0
100 km 7,290m  4,305 47.42 58.87 11.45 3.118 33.382 15.7

Note: WQI, water quality index; WTP, willingness to pay.

Figure 3
Map of Republican River Subbasins Showing Extent of the 100 km and 100 mi (160 km) Buffers
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and includes urbanized areas like Wichita and 
Lawrence, Kansas. These comparisons show 
that the extent of market has a much greater 
impact on total WTP than increasing the reso-
lution of the model (see also Table 3). 

5. Next Steps 

The case study presented here uses a proof-
of-concept version of the BenSPLASH water 
quality benefits model. The EPA is currently 
developing an open source version of Ben-
SPLASH, which will be housed in a public 
repository. The model will be composed of a 
front-end user interface and a separate back 
end built around accessible code (such as R 
and possibly Python) to perform analysis. 
This approach will allow us to more easily 
customize and explore different approaches 
to valuation in programming languages famil-
iar to economists. The open source nature of 
the model, along with clear logs detailing as-
sumptions and model options chosen for each 
model run, will facilitate transparent, repro-
ducible, and testable analyses. 

In addition to the programming changes to 
BenSPLASH, we will also be exploring im-
provements to the WQI used in the case study. 
Future versions of BenSPLASH will allow 
for more flexibility in the parameters included 
in the WQI and in the weights given to those 
parameters. Relying on the WQI opens a rich 
research agenda, including exploring the 
number and types of parameters to include in 
an index, the appropriate weighting scheme, 
the ability and method to construct geograph-
ically based regional subindices, and the pros 
and cons of using an index in relation to other 
approaches. We will investigate separating the 
WQI into two indices, a recreation-based in-
dex similar to the current WQI and an aquatic 
health index informed by species abundance 
and diversity and other ecological factors that 
are not directly correlated with suitability for 
human uses. 

Our research and development agenda 
also includes adding capacity to perform ad-
ditional valuation calculations. Colleagues at 
the EPA are developing a national hedonic 
model for water quality that will be incorpo-
rated as a module in BenSPLASH when ap-

propriate (Guignet et al. 2019). The current 
version of BenSPLASH includes a human 
health valuation module based on reducing 
exposure to arsenic via fish consumption. We 
plan to initially expand this module to incor-
porate other carcinogens associated with fish 
consumption and human exposure health end-
points. We are exploring how to incorporate 
a module that will allow using specific val-
uation data, to be aggregated over different 
populations and time horizons within Ben-
SPLASH. This will serve as both a prototype 
for valuing improvements in other iconic wa-
ter bodies, as well as create a module that will 
allow outside researchers to use BenSPLASH 
for their own work. Additional development 
includes specific valuation of wetlands, estu-
ary/coastal areas, and lakes. For coastal sys-
tems, HAWQS can provide loadings from 
large watersheds, but additional modeling 
may be needed to estimate nearshore loadings 
and to account for hydrodynamics and water 
quality dynamics in the water. Coastal water 
quality variables could be summarized into an 
existing index, and a regression similar to the 
existing Ben SPLASH approach (Johnston and 
Bauer 2019) could be used to assess changes 
in coastal water quality. Ideally, more coastal 
studies would be incorporated to reduce un-
certainty in the coastal estimates.

We are also improving HAWQS (version 
1.0 is currently publicly available). Specif-
ically, we are updating the existing national 
data layers for land use and weather; adding 
new data layers for soil and wetlands; updat-
ing the water temperature methodology; cali-
brating for various parameters including flow, 
nitrogen, and phosphorus; adding enhance-
ments to the user interface, including report-
ing and visualization of output statistics; and 
updating the system to more efficiently use 
larger datasets. 

The BMPs used in the hypothetical sce-
nario—vegetative filter strips and reduced 
impervious cover—are useful in evaluating 
the effects on water quality and flow. Though 
immediate adoption of these BMPs is not 
very plausible, the HAWQS SWAT base code 
allowed for only immediate adoption. Other 
conservation practices in HAWQS, such as 
reducing tillage or restoring managed land to 
natural conditions, can be implemented incre-
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mentally with a variable adoption rate both 
temporally and spatially in HAWQS, which 
allows for a more realistic HAWQS-Ben-
SPLASH IAM. 

6. Conclusion

We introduce a set of models being developed 
at the EPA to support water quality benefits 
valuation and demonstrate their ability to 
function as an IAM through a case study in 
the Republican River region. In addition, we 
outline an active research and development 
agenda that will result in additional capabil-
ities to perform a variety of water quality val-
uation analyses across the national landscape. 
The open source, collaborative approach we 
have taken to model development is designed 
to allow us to incorporate new data, ap-
proaches, and techniques developed by other 
researchers in this area.
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