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ABSTRACT  This paper describes our efforts to 
integrate economic and biophysical models to 
evaluate the effects agri-environmental policies 
have on the value of freshwater ecosystem ser-
vices. We are developing an integrated assess-
ment model (IAM) that links changes in phos-
phorus-related management practices on farm 
fields to changes in the value of key freshwater 
ecosystem services, including biological condi-
tion, water clarity, species-specific fish biomass-
es, and beach algae. Our IAM approach enables 
examination of the effects of policies and con-
servation programs on ecosystem services and 
values. Results will help policy makers allocate 
conservation dollars to improve water quality, 
enhance ecosystem services, and promote more 
sustainable agricultural production. (JEL Q24, 
Q51)

1. Introduction

The agricultural sector in the United States is 
essential to domestic and global production of 
food, feed, fiber, and fuel for humanity. Yet, 
agricultural production can also negatively 
impact the provision of ecosystem services 
important to society, including biodiversity, 
soil functions, climate regulation, recreation, 

and the supply of safe drinking water. In par-
ticular, agriculture has been identified as a 
key source of excess nutrient loadings to the 
nation’s rivers, lakes, and coastal waterways 
(Michalak et al. 2013; International Joint 
Commission 2014). These excess nutrients, in 
turn, lead to water quality degradation, includ-
ing groundwater contamination, algal blooms, 
hypoxic/anoxic conditions, and the loss of 
both fish biomass and native fish species (Car-
penter et al. 1998). Effective and sustainable 
agricultural policies must weigh the benefits 
of nutrient use to enhance crop yields against 
its environmental costs. Policy instruments 
should be designed to encourage producers 
to consider such tradeoffs (Garnache et al. 
2016).

Historically, federal water pollution control 
policies have largely focused on point sources, 
such as municipal waste treatment plants and 
pulp and paper mills. Congress enacted the 
Clean Water Act of 1972 to regulate nutrient 
pollution from point sources while exempting 
nonpoint sources and delegating their regu-
lation to states. States have generally opted 
for voluntary programs for nonpoint source 
pollutants, relying on financial incentives to 
encourage farmer adoption of best manage-
ment practices that directly impact fertilizer 
use or indirectly impact nutrient runoff, such 
as using cover crops, filter strips, and conser-
vation tillage (Ribaudo 2009). Unfortunately, 
these programs are often less effective than 
intended (Kling 2011; Ribaudo 2009; Shortle 
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et al. 2012; and more generally, Keiser, Kling, 
and Shapiro2019).

Many studies have examined the effects of 
conservation programs on land use and farmer 
adoption of best management practices (e.g., 
Cooper 2003; Liu and Lynch 2011; González-
Ramírez and Arbuckle 2015), while others 
have focused on relationships between wa-
ter quality and recreation demand (e.g., Mi-
chael, Boyle, and Bouchard 2000; Phaneuf, 
Herriges, and Kling 2000). There are com-
parably few studies that have directly linked 
the effects of conservation programs to the 
endpoint ecosystem services that consum-
ers value. González-Ramírez and Arbuckle 
(2015), for example, estimate the impact of 
a cost-sharing program on cover crop acre-
age, but do not trace the downstream effects 
of these changes on nutrient loadings and the 
ecosystem services that are ultimately valued 
by consumers. Van Houtven et al. (2014), on 
the other hand, estimate the economic value 
of ecosystem service changes due to a specific 
nutrient-loading scenario, but do not model 
the policies and farmer behaviors that induce 
the loading scenario. Our research seeks to 
take these approaches one step further, com-
pleting the linkage from policies through to 
key ecosystems services and the demand for 
these services by consumers.

Although agricultural nutrient pollution 
remains the major cause of stream and lake 
impairment in the United States and conser-
vation programs incentivize farmers to change 
behavior, little is known about the relationship 
between behavior changes on farms and the 
influence these play on the value of endpoint 
ecosystem services (Smith and Weinberg 

2006; Hellerstein and Lohr 2020). Research 
connecting policies to outcomes of interest is 
essential to comprehensively evaluate the ef-
fectiveness of agri-environmental policies, al-
lowing for direct comparison of each conser-
vation program’s costs and the corresponding 
benefits accrued to the consumers of ecosys-
tem services. However, the task is not trivial 
(Garnache et al. 2016; Smith and Weinberg 
2006).

Consider policies designed to mitigate en-
vironmental impacts of excess phosphorus 
(P) loadings, a limiting nutrient and common 
freshwater pollutant (U.S. Environmental Pro-
tection Agency 2009). Program evaluation re-
quires understanding the farm level response 
to a given policy, along with the associated P 
loadings from the farm to surface water and 
groundwater, as both dissolved reactive P and 
total P, which includes particulate P. Phospho-
rus then moves into streams and lakes, where 
each form of P has differing potential for af-
fecting algal growth and fish species compo-
sition and biomass. The growth of filamen-
tous algae can lead to muck formation, which 
covers beaches and releases foul smells when 
it decomposes, diminishing valued ecosys-
tem services. Modeling that links the various 
pieces of what Garnache et al. (2016) refer 
to as the “P puzzle” (Figure 1) is essential to 
evaluate the effectiveness of agri-environmen-
tal policies, and the end result would be an in-
tegrated assessment model (IAM) for agricul-
tural pollution (Hamilton et al. 2015; Kling et 
al. 2017; Keiser and Muller 2017).

Of particular interest here are the steps 
needed to arrive at and connect with the last 
piece in the P-puzzle: valuing changes in 

Figure 1
Linkages between the models to trace P from farm to the value of ecosystem services.

Driving 
forces

Scenarios:
Changes in
policies, liability,
technology, and
behavioral trends

Agricultural
production model

Crop growth
  SALUS model

Farmer 
behavior

Transport 
and fate

Ecosystem 
services

Demand for
ecosystem 
services

Landscape
Hydrology model
(LHM)

Algae
production model
Fish production
model

Water clarity
models

Biological 
condition models

Beach demand
model
Fishing demand
model

Nonuse values
model

Source: Adapted from Garnache et al. 2016.
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ecosystem services implied by the sequence 
of effects characterized in the other puzzle 
pieces (Figure 1). To do so, we focus on those 
ecosystem services with values that derive 
from recreation activities, particularly beach 
recreation and fishing, and on nonuse values 
for water clarity, game fish abundance, and 
biological condition from a recent stated pref-
erence study. Many stated preference studies 
of water quality build off the pioneering work 
of Carson and Mitchell (1993) and use a “wa-
ter quality ladder” and/or a water quality in-
dex (Griffith et al. 2012), though few can be 
directly linked to specific freshwater ecosys-
tem services (Johnston et al. 2012). Similarly, 
recreation demand models have long been 
used to value both access to water resources 
(lakes, rivers, and streams) and individual 
water quality characteristics such as Secchi 
transparency, odor, or fecal coliform count 
(e.g., Bockstael, Hanemann, and Strand 1987; 
Egan et al. 2009; Hicks and Strand 2000). 
Most studies have sought to value specific 
shifts in physical water quality attributes (to-
tal nitrogen or P level) rather than the ecosys-
tem services that follow from these attributes 
(e.g., fish biomass or species composition) or 
to value broad changes in water quality (e.g., 
from boatable to swimmable) without trying 
to link the changes back to underlying poli-
cies that induced the purported changes. This 
has changed in recent years, with a number 
of studies emphasizing the need to value eco-
system services rather than inputs to those 
services (e.g., Boyd and Banzhaf 2007; Boyd 
and Krupnick 2013). Some recent efforts have 
tied changes in the ecosystem services being 
valued to an underlying model describing the 
source of these changes (e.g., Van Houtven et 
al. 2014; Esselman et al. 2015; Melstrom et 
al. 2015).

The goal of this paper is to describe the 
development of an IAM for P that links pol-
icies designed to induce changes in farmer 
behavior to resulting changes in the economic 
value of key endpoint ecosystem services of 
the lakes, rivers, and streams in watersheds 
draining to the Great Lakes from Michigan’s 
Lower Peninsula as well as the downstream 
coastal zones of Lakes Michigan, Huron, and 
Erie. Our IAM is designed to capture farmer 
responses to alternative policy scenarios that 

in turn dictate excess P leaving the farm and 
includes valuation models linking changes 
in algal growth to beach demand, changes in 
fish biomass to fishing demand, and changes 
in water clarity, fish biomass, and biological 
condition to nonuse values. Connecting these 
pieces of the P-puzzle together are models 
capturing essential biophysical processes, in-
cluding the relationship between plant uptake 
and runoff, the transport and fate of P through 
groundwater and surface water, and relation-
ships between P concentrations, algal growth, 
and fish biomass.

Our IAM facilitates evaluation of the 
changes in values of affected ecosystem ser-
vices from existing conservation programs 
that incentivize changes in P use, conser-
vation tillage, and cover crop adoption. The 
IAM can be used to quantify likely ex ante ef-
fectiveness of future policies or management 
options such as mandatory soil tests combined 
with restrictions on P application, taxes on ex-
cess P in the soil, or changes in farmer atti-
tude (e.g., changes in social norms). Ex ante 
evaluation of agri-environmental policy costs 
and benefits will help policy makers and reg-
ulatory agencies identify and design effective 
programs to address P pollution.

This paper describes a multi-year modeling 
effort and represents many completed com-
ponents along with some that are underway. 
The reason for presenting the approach at this 
stage is to illuminate the extensive process of 
assembling an IAM for agricultural policy that 
is both broad in scale (state-level) yet capable 
of evaluating changes at fine spatial scales 
(farm fields). The central contribution of this 
paper is the presentation of integrated model-
ing to characterize the chain of effects from 
an economic model of farmer response to a 
policy initiative through to economic models 
of consumer demand for ecosystem services; 
we also link these ecosystem endpoints with 
biophysical models of P transport and fate 
that impact the ecosystem services available 
to consumers. Of relevance to economists, all 
of the valuation efforts we discuss were ex-
plicitly developed and designed to connect to 
ecological production functions and link to 
agricultural nutrients. Of note, our approach 
leverages extensive original research that has 
been and is being conducted by our team, 
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rather than relying on approaches such as ben-
efits transfer. Valuation researchers seeking to 
improve the connection of their efforts to im-
plications of agricultural and land use policies 
can benefit from seeing how such studies can 
be placed within the context of an IAM for 
agricultural nutrient pollution.

2. Methods and Linkages

In this section, we describe how an integrated 
model of P fate and transport from farms to 
key endpoint ecosystem services can quantify 
the likely benefits of different agri-environ-
mental policies. Our study area is spatially 
large, encompassing the Lower Peninsula of 
Michigan and its coastal shores with Lakes 
Michigan, Huron, and Erie (depicted on Ap-
pendix Figure A1), though our IAM approach 
can be applied to solve similar issues to other 
sites where model inputs are available.

We leverage existing models developed by 
our team and others to link P from farms to the 
value of key freshwater ecosystem services. 
The models depicted in Table 1 are being 
adapted to enable their linkages by matching 
their spatial and temporal scales and defining 
common stock and flow variables to track P 
transport and fate through various media and 
forms. To connect people to ecological impli-
cations of P fertilization, we focus on some 
recreational and some more general fresh-

water ecosystem services. For recreation, we 
address recreational fishing and Great Lakes 
swimming/beach use, both of which have over 
1 million participants annually in Michigan 
alone (U.S. Fish and Wildlife Service 2013; 
Chen 2013). More generally, we also use met-
rics such as the biological conditions gradient 
that captures the naturalness of ecosystems, 
and we value this using contingent valuation.

In what follows we provide more descrip-
tion of our IAM by identifying how our mod-
eling system handles the five key linkages 
(depicted in Figure 1) connecting farm pol-
icies through to their impacts on ecosystem 
services that consumers value.

Linkage 1: Connecting Farmer Behavior 
to Changes in P-related Management 
Practices

To understand how farmer behavior affects 
freshwater ecosystems, we are modeling 
farmer decisions that influence P dynamics 
in soils and the environment. Our modeling 
of crop production in river basins that drain 
to the Great Lakes from Michigan’s Lower 
Peninsula captures farmer crop choices, P 
fertilization, and soil management practices, 
including tillage choices. Our modeling is 
using positive mathematical programming 
(PMP), a nonlinear programming method 
widely used for agricultural and environmen-

Table 1
Processes, Relationships, and Key Variables of the Models

Process Model Relationships and Key Variables

Crop growth and yield System Approach to Land Use 
Sustainability (SALUS) 

Yield = f(weather, soil, management including P 
application)

Farmer behavior Agricultural production model P use = f(yield, prices, elasticities, regulations, subsidies)
Transport and fate Landscape Hydrology Model (LHM) P concentration = f(land use, hydrology, sources)

Water temp = f(recharge, air temperature, land use)
Ecosystem services Algae production model Algae in water and on Great Lakes beaches = f(P 

concentration, nearshore habitat)
Biological condition model Biological condition = f(P concentration, natural factors)
Fish production model Fish biomass = f(water temperature, P concentration)
Water clarity model Water clarity = f(P concentration, natural features)
Water safety model Water safety = f(fecal coliform counts)

Demand for ecosystem 
services

Beach demand model Value = f(algae in water and on beach)
Fishing demand model Value = f(fish biomass by species)
Nonuse values Value = f(water safety, clarity, fish biomass, biological 

condition)

Note: See also Appendix Figure A2 and Table A1.
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tal policy analysis (Johansson, Peters, and 
House 2007; Jenkins et al. 2001; Jansson and 
Heckelei 2011). PMP allows calibration of 
agricultural production models against avail-
able economic information with minimal data 
requirements, for example, regional land use 
and representative crop prices and agricultural 
management practices and input costs (How-
itt 1995). PMP has several advantages over 
linear programming including the ability to 
replicate the reference allocation without ar-
tificial constraints that may impede the mod-
el’s ability to respond to policy shocks, and to 
provide smooth responses to policy changes 
rather than step-wise responses from one cor-
ner solution to the next. These models can fur-
ther be calibrated against observed economic 
behavior and econometric estimates of supply 
elasticities to ensure realistic price responses 
(Garnache and Mérel 2015). In addition, PMP 
models can be calibrated against information 
on yield responses to input use (e.g., yield re-
sponse to P), an important advantage for the 
development of IAM and the ex ante evalu-
ation of agri-environmental policies (Mérel 
and Howitt 2014; Garnache 2015; Garnache, 
Mérel, Howitt, and Lee 2017; Garnache, 
Mérel, Lee, and Six 2017). In agricultural 
PMP applications, yield response information 
may come from field data or biophysical mod-
els. In our case, we use a crop growth model 
called Systems Approach for Land Use Sus-
tainability (SALUS, (described in more de-
tail below) that we calibrated to a sample of 
crop farm fields in Michigan to generate yield 
information for alternative cropping inputs 
such as P use. The yield outputs from the crop 
growth model feed into the farmer behavior 
model. In return, the decision variables of the 
farmer behavior model feed back into the crop 
growth model to quantify the impact of crop 
and inputs choices on nutrient dynamics (e.g., 
the transport and fate of P).

The farmer behavior model is a work in 
progress, although several major components 
of the model development and data collection 
have been completed. Our specific application 
assumes farmers maximize profits subject to 
the yield technology, with the possibility for 
including shadow benefits to account for non-
monetary factors such as preferences for the 
environment (Ma et al. 2012), social norms 

(Chen et al. 2009; Yeboah, Lupi, and Kaplow-
itz 2015) and other factors as in Garnache et 
al. (Garnache, Mérel, Lee, and Six 2017). Our 
data sources include a mix of existing data 
and field-specific data we collected through a 
farmer survey. For general data on statewide 
and regional crop production, and especially 
for row crops, we drew upon data collected 
through the Michigan Agricultural Statistical 
Service. Data to instantiate the PMP calibra-
tion for supply elasticities were taken from 
existing literature and studies. Data on input 
costs were collected from published crop bud-
gets from Michigan State University Exten-
sion.

An especially important component is 
yield and yield response to P and other man-
agement inputs such as tillage and conserva-
tion practices. In our case, the yield data were 
derived from the crop model in Linkage 2 for 
farm fields from our farmer survey. Our farmer 
survey was a combined push-to-web and mail 
survey of Michigan crop producers conducted 
in 2017 (unpublished data, Garnache et al.). 
The survey received a 30% response rate re-
sulting in data for 1,730 crop farms in Michi-
gan. Farmers provided data and locations for 
a specific field. Then, for each field in our sur-
vey, the crop model used externally available 
physical data such as weather, soil types, and 
slopes. Yield also depends on input choices 
by farmers regarding crop rotations, tillage, P 
and nitrogen inputs, cover crops, conservation 
program enrollments, among others, which 
we collected in the survey. The crop input data 
from the survey were used to predict yields 
at field levels under baseline conditions, and 
these data were then used in field-specific 
simulations under different weather scenar-
ios and with differing input levels such as P 
applications. The resulting field-level yields 
and yield responses were then aggregated into 
average yield relationships and average farms 
for each of 12 crop regions in Michigan. Our 
PMP approach is being applied and developed 
for each of these regions. Once completed, we 
will then downscale the regional behavioral 
responses to policies to field levels for all 
fields in statewide crop data layers (and not 
just our sample fields) for the prediction of P 
leaching (Linkage 2).
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Linkage 2: Connecting Changes in 
P-related Management Practices to 
Changes in P Transport from Fields

In our IAM, yield responses to P fertilizer 
and soil P availability are modeled with the 
SALUS model, which has been thoroughly 
tested against field measurements for soil car-
bon dynamics (e.g., Senthilkumar et al. 2009), 
crop yield (e.g., Basso et al. 2007; Asseng et 
al. 2013; Rosenzweig et al. 2013; Dzotsi, 
Basso, and Jones 2013), plant nitrogen uptake 
and phenology (e.g., Basso et al. 2010; Basso, 
Ritchie, et al. 2011; Basso, Sartori, et al. 
2011; Basso, Kendall, and Hyndman 2013), 
nitrate leaching (Giola et al. 2012; Syswerda 
et al. 2012), water use efficiency (Basso and 
Ritchie 2012), and P dynamics (Daroub et al. 
2003). SALUS is derived from the validated 
CERES models with added ability to quantify 
the impact of management strategies and their 
interactions with the soil-plant-atmosphere 
system on yield along with carbon, nitrogen, 
and P dynamics. It simulates continuous crop 
growth and soil, water, and nutrient conditions 
during growing seasons and fallow periods. 
SALUS requires input information on soil 
properties, climate, genotype, and agronomic 
management practices. As mentioned above, 
we used SALUS to create the yield responses 
to P in the farmer behavioral modeling, and 
for policy evaluations it will also be used to 
predict changes in nutrient leaching that feed 
into the hydrologic model.

Linkage 3: Connecting Changes in P 
Transport from Fields to Changes in P 
Concentration in Streams and Lakes

The Landscape Hydrology Model (LHM) 
is a fully distributed process-based code for 
high-resolution flow simulations over large 
domains (e.g., Hyndman, Kendall, and Welty 
2007; Kendall 2009; Wiley et al. 2010; Luscz, 
Kendall, and Hyndman 2017). It couples veg-
etation with surface and subsurface hydro-
logic processes in an efficient and scalable 
fashion. Surface and subsurface modules in 
this code are optimized to simulate large do-
mains at fine resolution with modest compu-
tational resources at grid resolutions such as 
120 m (Wiley et al. 2010) and 90 m (Luscz, 

Kendall, and Hyndman 2017). LHM simu-
lates (1) surface water storage and routing, 
(2) canopy and root zone, (3) deep unsatu-
rated zone, and (4) saturated zone groundwa-
ter. Within these domains, process modules 
simulate hydrologic fluxes from evaporation 
and transpiration to infiltration, groundwater 
recharge, overland runoff, and groundwater 
flow. Recharge fluxes to groundwater are cou-
pled to MODFLOW (Harbaugh et al. 2000), 
which is the most commonly used ground-
water flow code. LHM inputs include hourly 
climate data (precipitation, temperature, solar 
radiation, relative humidity, and windspeed), 
soil hydraulic properties, aquifer properties 
(hydraulic conductivity and specific storage), 
Leaf Area Index from the MODIS satellite 
every eight days, land cover, topography, and 
boundary conditions (such as locations and el-
evations of large lakes). The code, which has 
been validated in multiple domains including 
Michigan’s Lower Peninsula (Luscz, Kend-
all, and Hyndman 2017) and the High Plains 
Aquifer, has been shown to accurately predict 
stream flows within ~6% of annual precipita-
tion with no calibration of parameters except 
the hydraulic conductivity of aquifer materi-
als. As such, the model is well suited to pre-
dict the influence of changes in climate and 
land use on water fluxes.

The nutrient transport model consists of a 
high-resolution (30 m) source loading model 
and a paired statistical and process transport 
model (Luscz, Kendall, and Hyndman 2015, 
2017). Surface- or subsurface-applied nutri-
ents are transported based on the simulated 
hourly distribution of water that takes various 
paths, with uptake by plants simulated using 
transfer functions from SALUS, and sorption 
to sediments. LHM has been coupled with 
SALUS to adopt its plant growth, root wa-
ter, and nutrient uptake algorithms (SALUS-
LHM). Flows of water and nutrients feed from 
this model into the subsequent ecological 
models.

Because P from manure contributes ap-
proximately 34% of P loadings in row crop 
agriculture and nearly 100% of P loading 
from pastures in Michigan’s Lower Peninsula 
(Luscz, Kendall, and Hyndman 2015, 2017), 
we may augment future versions of the farmer 
behavior model with a livestock economic 
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model to capture major manure production 
sources and waste management practices. Al-
though our baseline modeling efforts will not 
model livestock decisions, it will account for 
livestock loadings with a model that was al-
ready developed (Luscz, Kendall, and Hynd-
man 2015), allowing us to tease out the por-
tion of P loading due to crop production.

Linkage 4: Connecting Changes in P (and 
Nitrogen) Concentrations in Streams and 
Lakes to Changes in Ecosystem Services

In this step we relate P concentrations to a 
wide array of measures of ecosystem services 
in inland lakes, streams and rivers, and the 
coastal zone of the Great Lakes (Appendix 
Table A1). The ecosystem services include bi-
ological condition, water clarity, beach algae, 
and species-specific fish biomasses. We se-
lected these ecosystems services because they 
are known to generate economic value, and 
we expect different responses of these ser-
vices to P pollution. For example, as P pollu-
tion is reduced, most measures of ecosystems 
services will improve, although some fisheries 
production may decrease for nutrient-tolerant 
game fish species (Esselman et al. 2015).

Where possible, we rely on existing mod-
els when they have been characterized fully in 
the literature or are available from authors. In 
other cases, we are developing or have devel-
oped new statistical models using data from 
a variety of sources, including extensive data 
from U.S. Environmental Protection Agency 
(USEPA) national and regional surveys as 
well as other personal and publicly available 
sources. In the case of Cladophora in the Great 
Lakes, we are using existing process-based 
models as well as statistical models to relate P 
concentrations to algal fouling of beaches. Pa-
rameters describing climate, geology, hydrol-
ogy, lake morphometry, and bathymetry have 
and will be included in models to account for 
natural variability in ecological responses to 
phosphorus.

Biological Condition and Water Quality 
Metrics
Biological integrity of water bodies was mea-
sured by biological condition (sensu Davies 
and Jackson 2006 and U.S. Environmental 

Protection Agency 2016) and as called for in 
the Clean Water Act. Statistical models of bi-
ological condition response to P concentration 
were developed using data from the USEPA 
National Rivers and Streams Assessment 
(NRSA), the USEPA National Lakes Assess-
ment (NLA), and the data from the USEPA 
Coastal Condition Assessment. These models 
use indicators of ecological conditions and 
site-specific modeling approaches in which 
natural variation in expected values of met-
rics in the reference condition are predicted 
and compared to measured conditions at sites 
(Cao et al. 2007; Tang, Stevenson, and In-
fante 2016; Liu and Stevenson 2017). Natural 
variation in metric values can be great among 
reference sites within an ecoregion (Tang, Ste-
venson, and Grace 2020). Specifically, using 
the sites where biological condition data were 
available, we first developed models of condi-
tion as a function of natural and anthropogenic 
factors (e.g., climate, soils, geology, habitat 
geomorphology, and land use) that would be 
readily available for any water body by us-
ing existing databases. We then applied these 
models to existing databases for streams, riv-
ers, and lakes for Michigan’s Lower Peninsula 
to predict condition for all waters in our IAM.

Metrics of biological condition for diatoms 
were used to characterize biological condition 
for rivers and lakes because they are available 
in both the NRSA and NLA, are highly sensi-
tive to phosphorus, reflect both structure and 
function of biological condition, and are rou-
tinely used around the world to assess ecolog-
ical condition (Stevenson 2014). Using NRSA 
and NLA data from the Great Lakes Region, 
we constructed two statistical models, one for 
streams and rivers and another for lakes. The 
models predict biological condition as a func-
tion of water body and watershed-scale fac-
tors. We then applied these models to predict 
biological condition in streams, rivers, and 
lakes of the Lower Peninsula of Michigan. For 
biological condition of the Great Lakes near-
shore zones, we used the Oligochaete Trophic 
Index that was calculated for samples in the 
Great Lakes collected during the USEPA’s 
National Coastal Condition Assessment.

Statistical models for water clarity were 
constructed and tested using data from the 
USEPA’s National Lakes dataset using avail-
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able data from the Lower Peninsula of Mich-
igan. In these models, natural features such 
as size and depth of lakes regulate effects of 
P loading and concentration on Secchi disk 
depths. These estimated relationships pro-
vided model predictions and underlying link-
ages to P for all water bodies in our IAM. In 
contrast to lakes, modeling Secchi depth in 
rivers and streams required a transformation 
of turbidity to Secchi depth because turbidity 
is what was measured in the NRSA. 

We also developed statistical models for 
fecal coliform that are used in some of the 
valuation models in Linkage 5, even though 
fecal coliform is not presently linked to P 
management. Because it might potentially be 
affected by livestock management options, 
we included fecal coliform in the valuation to 
preserve the option for additional linkages in 
future efforts.

Beach Algae
To address the effects of fouling of beaches 
by algae, the filamentous algae Cladophora1 
provides a good example of how multiple 
models are being used to characterize the re-
sponse of ecosystem services to P concentra-
tion management. Beach fouling by algae is 
being related to P loading to nearshore zones 
of the Great Lakes surrounding the Lower 
Peninsula of Michigan using three models 
(some existing and some under development). 
The first model will use an ensemble of re-
sults from existing hydrodynamic nearshore 
zone mixing models to predict P concentra-
tions based on P load to the lakes, which will 
be estimated using LHM (Linkage 3). The 

1 Beach fouling in the Great Lakes by Cladophora was 
a major problem for recreation in the middle to late 1900s 
(Taft and Kishler 1973; Konasewich, Traversy, and Zar 
1975). Phosphorus pollution was identified as the major 
cause of Cladophora growth on the Great Lakes bottoms and 
the resulting beach fouling. As a result, P regulation reduced 
P pollution of the Great Lakes and reduced beach fouling by 
algae (Painter and Kamaitis 1987). In the late 1900s, inva-
sive species changed the Great Lakes ecosystem and caused 
a resurgence of beach fouling by benthic algae (Higgins et 
al. 2005; Auer et al. 2010). Invasive dreissenid mussels are 
filter feeders that have changed the Great Lakes in ways that 
favor bottom-dwelling algae that foul beaches (see review 
in Auer et al. 2010). Despite the great changes in the Great 
Lakes caused by these mussels, P management continues to 
be recommended to reduce Cladophora accumulation and 
beach fouling (Kuczynski et al. 2016).

nearshore mixing models are available from 
NOAA (www.glerl.noaa.gov/res/glcfs). Phos-
phorus concentrations will then be related to 
Cladophora growth and nearshore accumu-
lation while accounting for area of nearshore 
zones with enough light and suitable habitat 
for Cladophora. The second model will pre-
dict Cladophora accumulation (biomass/area) 
in the nearshore zone as a result of its growth 
rate (biomass/time), P concentration, water 
transparency, and lake depth in the nearshore 
areas with enough light and suitable habitat 
for Cladophora. There are two commonly 
used, and related, Cladophora accumulation 
models: the more detailed Auer and Canale 
model (Auer and Canale 1982; Auer et al. 
1982) and the simplified version called the Cl-
adophora growth model (CGM; Higgins et al. 
2005; Higgins, Hecky, and Guildford, 2005). 
These models have been applied success-
fully in multiple regions of the Great Lakes 
(Malkin, Guildford, and Hecky 2008), partic-
ularly in Lakes Huron and Erie, and they are 
both candidates for our modeling. The third 
model will relate Cladophora accumulation to 
beach fouling using modeled nearshore accu-
mulation, satellite maps of macroalgal habitat 
(Shuchman, Sayers, and Brooks 2013; Brooks 
et al. 2013), and data for beach fouling from 
the Michigan BeachGuard System (Michigan 
Department of Environmental Quality, www.
deq.state.mi.us/beach/). These models will al-
low us to connect levels of algae in the water 
and on the shore of beaches to P loadings and 
classify beach algae in a way that matches the 
categories used in EPA’s beach surveys and 
links directly to the measures of beach algae 
in our valuation models in Linkage 5.

Game Fish Biomass
For game fish, we developed models that re-
late P concentrations to biomass. For lakes, 
these models build upon the models for river 
species reported in Esselman et al. (2015). 
Specifically, game fish abundance in lakes 
and rivers has been measured through biolog-
ical sampling by the Michigan Department 
of Natural Resources. Because the biomass 
data are not available for all water bodies, 
the measured biomass data were used to es-
timate ecological models that were then used 
to predict biomass at our water bodies of in-
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terest. For both lakes and for rivers, the esti-
mation used boosted regression trees to define 
nonlinear functions that predicted biomass 
at a water body as a function of its charac-
teristics (e.g., temperature, size, morphology, 
P concentrations) and of landscape-scale 
characteristics for the areas around the lake 
(e.g., geology, forest cover). The boosted re-
gression trees allowed us to compute partial 
dependencies of the estimated biomasses on 
P and provide predictive relationships for 
our modeling. All boosted regression mod-
els were trained (i.e., estimated) on subsets 
of the data and cross-validated against hold-
out samples. For inland streams and rivers, 
the game fish species modeled include brook 
trout, brown trout, bass, panfish, and walleye 
(Esselman et al. 2015), and for inland lakes 
species, models were developed for bass, pan-
fish, yellow perch, and walleye (unpublished 
data, Esselman et al.). The species modeled 
were selected because they are key targets for 
recreational anglers and had sufficient data for 
modeling. For river and streams, species-spe-
cific biomass estimates were predicted for 
each individual river or stream segment and 
were then aggregated to the hydrologic unit 
code (HUC) 10 level for Linkage 5 below. 
For inland lakes, species-specific biomass es-
timates were predicted for 1,615 individual 
inland lakes in Michigan (described further in 
Linkage 5).

Linkage 5: Connecting Changes in Fish 
Species Composition and Fish Biomass 
to Changes in the Value of Recreational 
Fishing, Changes in Algae at Beaches to 
Changes in the Value of Beach Recreation, 
and Changes in Metrics such as Biological 
Condition to Nonuse Values

Recreational Fishing
For recreational fishing, the above-mentioned 
species-specific biomass estimates that were 
linked to P have been linked to recreational 
site choices and values at rivers (Melstrom et 
al. 2015) and lakes (Klatt et al. 2017). For riv-
ers, the Melstrom et al. (2015) demand model 
includes 232 watershed sites defined at the 
HUC 10 level and relates angler site choices 
to biomass for brook trout, brown trout, wall-

eye, bass, and panfish. For inland lakes, the 
Klatt et al. (2017) model links angler site 
choices to species-specific biomass of pan-
fish, bass, walleye, and yellow perch for 1,615 
inland lakes in Michigan (for all of the 1,157 
lakes 100 acres or larger and for the 458 lakes 
10–100 acres visited by at least one angler in 
the over 10,000 records of angler lake trips 
from our surveys). In both cases, the data on 
anglers’ fishing locations and species targeted 
were from monthly last-trip mail surveys 
conducted from 2008–2013 that achieved a 
40%–48% response rate (Melstrom and Lupi 
2013; Melstrom et al. 2015). Thus, for both 
inland lake and river fishing, angler behavior 
is linked to P because the biomasses were in-
tentionally modeled as a function of river and 
lake P. For the small portions of watersheds 
outside of Michigan, the existing statistical 
relationships for the Michigan models will be 
applied to anglers in non-Michigan watershed 
areas, a form of valuation via benefit function 
transfer (Johnston et al. 2015).

To provide an example of how the models 
are coupled, we provide more detail on the 
inland lake recreation demand model of Klatt 
et al. (2017). The model was specified as a 
nested logit random utility site choice model 
(Parsons 2017). Some key specification de-
tails follow recent approaches in the literature. 
For example, the data included both single 
and multiple day trips that were pooled into a 
common demand specification following En-
glish et al. (2018). Only the 8,245 trips where 
the angler indicated that fishing was the main 
purpose of the trip were included in the mod-
eling, although all 10,660 trips regardless of 
purpose were used to identify the 1,615 indi-
vidual lakes that were included in the univer-
sal choice sets. For the round-trip travel costs, 
driving costs were calculated following the 
convention of only including marginal costs 
and excluding fixed costs such as annual de-
preciation and insurance (English et al. 2018; 
Lupi, Phaneuf, and von Haefen 2020), and the 
time costs were computed using one-third of 
annual household income converted to hours 
by dividing by 2000.

Due to the large number of individual lakes 
in the choice set and the fact that a large share 
of lakes received only one trip in the data, 
the model was not estimated with a full set 
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of site fixed effects as suggested by Lupi, 
Phaneuf, and von Haefen (in press), but it 
did follow their recommendation to include 
a set of regional fixed effects (for the HUC 
4 ecoregions). The sites were nested by these 
ecoregions to account for possible regional 
correlations among the error terms. In addi-
tion, because there is a skewed distribution 
of lakes sizes with many smaller lakes and a 
large upper tail and it is likely that lake size 
affects visitation, the site variables included a 
measure of lake size along with the fish bio-
mass variables. Table 2 reports key model es-
timates (the ecoregional dummies are omitted 
for convenience). As expected, the travel cost 
has a significant negative effect on site choice 
and there is significant support for nesting the 
lakes by region. Each of the game fish bio-
mass measures is significant and positive, and 
walleye is the most desirable inland lake spe-
cies. These biomass parameters provide the 
linkage between P-induced changes in bio-
mass and changes in recreational fishing de-
mand and value.

Beaches
Recreational use of beaches is another key 
ecosystem service affected by P-related al-
gal problems. To quantify the changes in the 
value of this service, we adapt a spatially 
explicit beach recreation demand model that 
links algal presence in the water and algae on 
beaches to Great Lakes beach visitation us-
ing an economic demand system (Cheng and 
Lupi 2016). The model combines the revealed 
preference data of Chen (2013) with the stated 
preference data of Wiecksel (2012) to connect 

beach visits to beach algae (i.e., the amount of 
algae on shorelines and the amount of algae in 
the water along beaches). The model of Cheng 
and Lupi (2016) was specifically designed 
to connect beach use to the available algal 
data—the same data being used in the Clado-
phora ecological model from Linkage 4. The 
economic models use survey data with trip 
details (e.g., trip locations, lengths, month) 
for over 5,500 randomly selected Michigan 
residents from a statewide general population 
mail survey with a web-based follow-up that 
collected trip data. The data have beach loca-
tions for over 8,000 trips and contain a full 
panel of seasonal trips for each beachgoer. As 
with the lake fishing demand model described 
above, only main-purpose recreation trips 
were included; single and multiple day trips 
were pooled into a common demand struc-
ture, and travel costs were specified as above. 
The model was estimated as a repeated nested 
logit with three nesting levels: a participation 
level, a lake region level (with lakes divided 
into zones), and a beach level with the 451 in-
dividual public Great Lakes beaches.

The resulting beach demand model can 
predict changes in beach visitation and associ-
ated economic benefits or costs to beachgoers 
that result from changes in beach algae, in-
cluding the location and severity of algae due 
to P loadings. For example, the model predicts 
that if half the beaches in a region experienced 
a 25% increase in algae on the shore and in 
the water, then annual recreational losses 
amount to almost $50 million in the relatively 
degraded southeastern beaches and almost 
$80 million in the more pristine northwestern 

Table 2
Inland Lake Fishing Demand Estimates from Nested Logit Site Choice Model

Site Choice Variable Estimated Coefficient Clustered Standard Error

Travel cost –0.021* 0.001
Lake size (×1,000 acres)   0.110* 0.006
Targeted species biomass (kg/ha)
  Bass   0.769* 0.149
  Panfish   0.333* 0.028
  Walleye   2.955* 0.199
  Yellow perch   1.947* 0.358
Ecoregional nests, θn   0.646* 0.028
Trips 8,245

* Significant at 0.001 level.
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beaches on Lake Michigan (Cheng and Lupi 
2016). For areas outside of Michigan, the ex-
isting statistical relationships for the Michi-
gan models will be applied to adult popula-
tions in non-Michigan watershed areas using 
benefit function transfer in a manner similar 
to Palm-Forster, Lupi, and Chen (2016).

Nonuse Values
Total values for changes in nutrient loads in 
Michigan will be modeled using a contingent 
valuation model being developed by Herriges, 
Lupi, and Stevenson (unpublished) that was 
purposefully designed to connect within our 
integrated modeling framework. A pilot ver-
sion of the total value model was estimated us-
ing contingent valuation survey data collected 
from an online panel of over 3,000 Michigan 
residents during the fall of 2018 (Lupi et al. 
2020). The final model will be based on re-
sults of a survey fielded in early 2020 that 
was an address-based, push-to-web survey of 
the general population of Michigan. A single 
referendum question was used to elicit prefer-
ences. The water quality scenarios utilize four 
distinct water quality metrics that were mod-
eled for individual water bodies and shown to 
respondents using maps and summary statis-
tics at the HUC 8 scale. The four water quality 
metrics are a water contact metric (for water 
safety related to fecal coliform counts), a wa-
ter clarity metric, a game fish metric, and a 
metric of aquatic biological integrity. The 
game fish metric was constructed using the 
same underlying ecological production func-
tions described in Linkage 4 that relate game 
fish biomasses to P concentrations. The other 
metrics were developed following a similar 
procedure that involved statistically modeling 
the relationships between each metric and the 
features of the water body (including P con-
centrations) and surrounding landscape, and 
then the models were used to create predic-
tions for all water bodies. These predicted val-
ues were summarized at the HUC 8 level and 
reported in the survey via maps, graphics, and 
summary statistics. The four metrics were in-
dependently varied across the survey versions 
and allowed for scenarios in which decreases 
in P concentrations might reduce the game 
fish index as suggested for some species by 
Esselman et al. (2015). The survey also in-

cluded information on recreational use that 
will allow us to separate use and nonuse val-
ues to avoid double-counting. The valuation 
model, funded by the USEPA, was designed 
to be able to measure values for small changes 
in water quality in a manner suitable for ben-
efits transfer. The resulting valuation model 
will be explicitly linked to fine scale changes 
in P concentrations throughout the state and 
by construction fits directly within our IAM.

3. Discussion

This paper describes modeling work that has 
been underway for many years with the goal 
of developing an IAM for agricultural nutri-
ent pollution. Our approach differs from some 
because we model at a statewide scale rather 
than for an individual watershed, and we use 
a variety of physical models that may be of 
interest to other practitioners (e.g., LHM and 
SALUS). Moreover, rather than relying on 
benefits transfer, all our valuation efforts were 
explicitly developed and designed to connect 
to ecological production functions linked 
to nutrients. Presenting our approach at this 
stage of development makes these models 
and our valuation strategies available to other 
practitioners and may improve the ability of 
some future valuation studies to connect their 
results to agricultural nutrient pollution.

As we have summarized, our IAM compo-
nents contain a mix of completed work and 
work in progress. Once all components are 
completed and integrated, our systems assess-
ment model can be used to evaluate the effec-
tiveness of potential agri-environmental pol-
icies and changes in farmer behavior on the 
value of key freshwater ecosystem services. It 
provides a unique platform to evaluate conser-
vation policies because the economic model 
of farmer behavior is explicitly linked to eco-
nomic models of ecosystem service demand 
and value via the biophysical models. With 
our integrated model, we perform evaluations 
of existing and potential P-management pol-
icies.

For example, one model application to pol-
icy we plan to conduct will evaluate invest-
ments in voluntary conservation programs. 
Federally sponsored voluntary conserva-
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tion programs have been criticized for being 
ineffective. Yet, few studies have directly 
estimated the benefits of conservation pro-
grams on the value of freshwater ecosystem 
services. Our IAM can assess the effects of 
direct (e.g., nutrient management plans) and 
indirect (e.g., conservation tillage and cover 
crops) programs on the value of key fresh-
water ecosystem services. This will be done 
by constructing a “without conservation pro-
grams” counterfactual scenario within the 
agricultural production model, and then feed-
ing the changes through our IAM to evaluate 
changes in values. In another policy evalua-
tion, we plan to examine the expected impli-
cations of recent lawsuits that claim farmers 
are responsible for nutrient pollution, and of 
Wisconsin’s Nutrient Reduction Strategy that 
imposes fertilizer application limits based on 
mandated soil tests on all agricultural fields. 
For our study region, we will quantify how 
potential mandatory adoption of soil tests, 
combined with fertilizer limits or a tax on soil 
P in excess of a given threshold would likely 
affect farmer decision-making, crop yields, P 
transport and fate, and the values for freshwa-
ter ecosystem services of Michigan’s inland 
lakes, streams, and coastal shores.

Among the many challenges in construct-
ing an IAM for agricultural nutrient pollution, 
two of the most daunting are those that involve 
linking human systems with the biophysical 
process models describing the fate and trans-
port of pollution in the environment. The first 
of these links farmer behavior with the fate 
and transport of pollution. Whereas the latter 
works at a fine spatial scale (e.g., 10 m × 10 
m cells), most farmer behavior models are de-
veloped at a county or regional level, reflect-
ing in part the available data on land use and 
management practices. Passing both baseline 
conditions (e.g., P usage, crop choices, and 
tillage practice), and how these conditions 
change in the face of policy scenarios, to the 
next link in the IAM requires distributing ag-
gregate choices down to a finer spatial scale. 
How this is done can impact the outcomes of 
any policy assessment. One approach is to as-
sume that conditions measured for the broad 
spatial scale apply in miniature for the indi-
vidual farm or land segments. Luscz, Kendall, 
and Hyndman (2015), for example, assume 

a proportionate adjustment to recommended 
application rates in distributing county level 
fertilizer levels to disaggregate (i.e., finer) 
individual cells. While this is a reasonable 
starting point, it does not allow for farmers 
to respond optimally to policy changes. For 
example, in the face of restrictions to P use, 
a farmer might choose to disproportionately 
cut back P usage for fields with high level of 
P in the soil. Modeling the relative costs of 
adjusting P at a fine spatial scale by incorpo-
rating farmer behavior (e.g., by drawing on in-
dividual farm level usages patterns) and mini-
mizing the aggregate costs of responding to a 
phosphorus constraint would provide a more 
accurate assessment of a policy’s impact, both 
on the farmer and on the environment.

The second challenging linkage is between 
the models that characterize how ecosystem 
services are impacted and the modules that 
value the changes in those services. The for-
mer, again, operates at a fine temporal and spa-
tial scale, describing how ecosystem services 
are impacted by a policy. However, most val-
uation exercises characterize environmental 
condition in broad scales or terms, for exam-
ple, describing how water quality conditions 
have changed from “boatable” to “fishable” or 
“swimmable” over the course of a seasonal or 
annual timescale. While such simple charac-
terizations are driven by the desire to convey 
the impact of a policy initiative in a concise 
fashion, they can hide important implications 
of a policy initiative. For example, reducing 
P loadings in a river or lake can improve the 
clarity of the waterway, making it more suit-
able for swimming, yet it may at the same 
time hinder the ability of the waterway to sup-
port productive fisheries. Although our work 
makes strides on this front, more is needed to 
provide consumers with a clear characteriza-
tion of the ecosystem services along all the 
dimensions that impact the values they derive 
from water-based recreation.
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