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ABSTRACT Many biophysical models exhibit 
epistasis (interdependence), where a conserva-
tion action impacts the effectiveness of another 
elsewhere. At the same time, ranking conserva-
tion actions according to the independent bene-
fit-to-cost ratios is cost-efficient when epistasis 
is absent. We use benefit-to-cost rankings as 
starting points for an evolutionary algorithm 
employing an epistatic biophysical model. We 
model a variety of conservation actions to as-
sess trade-offs for sediment reduction and wild-
life conservation in the study watershed. We 
find that despite the presence of epistasis, the 
weighted benefit-to-cost ratio-derived solutions 
perform remarkably well in the decision space, 
but effects in objective space need the model 
evaluation. (JEL Q25, Q52)

1. Introduction

Optimizing the mix and location of conserva-
tion actions within a watershed, which consid-
ers the spatial heterogeneity in conservation 
effectiveness and cost across the agricultural 
landscape, can bring significant gains in terms 
of stretching conservation funds and is a nec-
essary component for any effort aiming to 
fully assess or maximize the net social ben-

efit of managed landscapes. Effectiveness of 
conservation actions is, among other factors, 
highly dependent on their spatial arrangement 
within a watershed. The structure of many 
biophysical models captures such effects, 
and models are often used in optimization 
applications within a simulation-optimiza-
tion paradigm. A sizeable body of literature 
on agricultural landscape optimization using 
evolutionary algorithm (EA) simulation-op-
timization approaches has been developed, 
with perspectives emphasizing agricultural 
systems engineering (Veith, Wolfe, and Heat-
wole 2003; Arabi, Govindaraju, and Hantush 
2006; Maringanti et al. 2011), agricultural 
and environmental economics (Bostian et al. 
2015; Rabotyagov, Valcu, and Kling 2013), 
and hydrology (Wu et al. 2018). In the context 
of cost efficiency, where environmental objec-
tives are not monetized, the task is generally 
to find a spatial pattern of conservation ac-
tions that attains a specific environmental ob-
jective with the lowest cost (or a pattern that 
attains the largest desirable environmental 
change for a limited budget). Often, multiple 
noncommensurate environmental objectives 
are of importance, and the cost-effectiveness 
problem is generalized into multiobjective 
optimization, where the principle of Pareto 
efficiency is used to generate solutions (i.e., 
one cannot attain any improvement in a de-
sirable objective, e.g., lower cost, without a 
sacrifice of another desirable objective, e.g., 
water quality). In other words, such optimi-
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zation exercises aim to construct frontiers of 
production possibilities with respect to (1) 
nonmonetized goods and services represented 
by environmental objectives and (2) mone-
tized goods and services represented by the 
costs of conservation actions. 

In some cases, conservation budgets or 
environmental targets represent stringent re-
al-world requirements, and constrained opti-
mization becomes of primary importance. In 
other cases, the question of interest is not spe-
cifically tied to a precise water quality goal or 
budget constraint; rather, the primary interest 
lies in understanding the trade-offs between 
cost and one or more environmental objectives 
or in assessing the degree of synergistic rela-
tionships among environmental objectives. 
Synergies may be present among those envi-
ronmental objectives, which can be produced 
simultaneously by some conservation actions 
and/or a particular spatial arrangement of 
conservation actions. We do not impose strict 
constraints on costs or environmental objec-
tives and estimate the full scope of cost-effi-
cient trade-offs and potential synergies.

In this paper, we focus on estimating effi-
cient trade-offs between multiple environmen-
tal and economic objectives using a hybrid 
simulation-optimization approach. Sediment 
reduction, a common nonpoint source water 
pollution management problem, constitutes 
the first environmental objective, with wildlife 
production (represented by estimates of duck 
hatchlings) being the second. We use highly 
spatially resolved data for the study region, 
an area of intensive crop production, aiming 
to estimate trade-offs and to present the solu-
tions in a spatially explicit way. We employ 
a multiobjective EA heuristic to estimate the 
set of Pareto-efficient landscape management 
configurations. On the environmental bene-
fits side, we use an ecohydrologic sediment 
model tailored to the study region and a sim-
ple empirical model of duck production. On 
the costs side, we use a mix of engineering, 
econometric, and real options estimates to ar-
rive at costs associated with conservation ac-
tions to be used in optimization.

Our landscape-level watershed optimiza-
tion problem is formulated with many deci-
sion variables corresponding to small spatial 
units and coupled with a complex biophysical 

simulation model. Due to the “curse of di-
mensionality,” it is not feasible to solve such 
simulation-optimization problems exactly 
(see, e.g., Kollat, Reed, and Kasprzyk 2008). 
Consequently, we explore an alternative. We 
combine approaches used in exact optimiza-
tion (a “greedy” ranking based on a weighted 
benefit-to-cost ratio) with a simulation-opti-
mization EA heuristic that can further chal-
lenge and improve the solutions and estimate 
trade-off frontiers, which may be satisfactory 
in terms of policy discussion and decisions. 
Intuitively, there is a trade-off in errors to be 
considered in choosing the optimization ap-
proach. Heuristic simulation-optimization 
approaches represent the consequences of 
landscape actions in a manner exactly consis-
tent with process model assumptions, but we 
cannot be assured of the optimality of solu-
tions obtained. Exact approaches assure us of 
optimality of the solutions obtained, yet in-
troduce error due to the simplification of the 
underlying process (model). By combining 
approaches we seek to reduce the overall error 
associated with optimization (of course, any 
errors associated with the process model and 
its assumptions still propagate to any solu-
tions discovered). At a minimum, such fron-
tiers can provide an estimate of how well a 
specific watershed policy proposal compares 
to the solutions such hybrid approaches can 
feasibly discover.

2. Materials and Methods

Multiobjective Optimization

We estimate the efficient trade-offs by con-
ducting a multiobjective optimization search 
using the EA heuristic. The objective is for-
mulated similarly to that of Rabotyagov et 
al. (2010): we aim to approximate the Pareto 
frontier associated with simultaneously mini-
mizing (1) the annual cost of conservation ac-
tions affecting sediment and duck production, 
(2) the mean annual sediment load at the wa-
tershed outlet, and (3) the (negative of) total 
annual duck hatchling production. That is, the 
algorithm solves the following:

…1 2min[ ( ),  ( ) ,  ( ) ,  ,  ( ) ],Nc y y yX X X X  [1]
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subject to (X,Y) ∈ T, where X is a set of con-
servation actions. The environmental benefits 
of X are denoted by Y, where Y is a vector 
with N elements, namely, = …1 2( , , , )Ny y yY .  
Here, N = 2, and the relevant environmental 
indicators are the sediment loadings and duck 
hatchlings. T defines implicit constraints rep-
resented by the environmental models. The to-
tal cost of a particular pattern of conservation 
actions is represented by c(X). 

The set of solutions consists of all watershed 
conservation plans that are Pareto optimal. A 
conservation plan X is Pareto optimal if there 
is no (X′, Y′) ∈ T such that ≤( )  ( )n ny yX X'  
and ≤( ) ( )n nc cX X' , for all n ∈ {1, 2, . . . , N}, 
and such that m ∈ {1, 2, . . . , N}, such that 

≤( )  ( )m my yX X'  or ≤( ) ( )m mc cX X' . In other 
words, once such a solution is found, it is 
not possible to improve on any one objective 
without trading off another. All the (approx-
imate) efficient solutions found make up the 
three-dimensional trade-off frontier, which 
we denote as F(X).

The EA used is an elitist (nondominated 
solutions are maintained in the archive) 
(Rabotyagov et al. 2010) modification of a 
SPEA2 algorithm (Zitzler, Laumanns, and 
Thiele 2001). In our application, we assume 
that the K decision variables are binary, 
the cost objective is linear and separable 
( ==∑ 1

( )
K

k kk
c c xX ), and the duck popula-

tion objective is also linear and separable 

==∑duck
1

( ))( )
K

k kk
y g xX . The sediment ob-

jective is represented by the sediment simula-
tion model, which is not easily written down 
in a compact form: =sed ( ) ( ) y SX X .

Epistasis

In many problems where simulation models 
are used, effectiveness of a specific decision 
variable depends on the state of other decision 
variables. Such issues often arise in biological 
conservation and other environmental man-
agement problems. For example, the survival 
probability of a species depends on the overall 
habitat size, the configuration of sites, and the 
distance and connectivity between sites (Fah-
rig 2003). Everything else being equal, neigh-
boring sites tend to have a higher ecological 
value than isolated ones because species can 

migrate between sites, facilitating recoloni-
zation of sites in which a population has be-
come extinct (Hanski 1998). As Murdoch et 
al. (2007, 377) pointed out: “In virtually all 
cases of interest, conservation actions are not 
independent of each other, and conservation 
planning is, therefore, a ‘portfolio allocation’ 
problem rather than a simple ranking prob-
lem: the benefits or costs of an action depend 
upon what other actions are taken.” 

As a result, one of the challenges in cost-ef-
fective policy design for biodiversity conser-
vation is that the ecological value of habitat 
patches for the survival of species is space 
dependent, in other words, it depends on the 
presence and location of other habitat patches 
(Drechsler and Wätzold 2009). A recent study 
by Taylor (2019) highlighted that policies for 
wildfire risk mitigation depend on the charac-
ter of the spatial dependencies between neigh-
boring homeowners’ investments. Murdoch et 
al. (2007, 377) write: “The number of species 
protected by purchase of a particular parcel 
of habitat may well depend on whether the 
parcel is connected to other parcels of habitat 
or is relatively isolated. When returns are not 
independent across actions, the complete al-
location across all actions needs to be consid-
ered jointly rather than considering the return 
on each action in isolation.”

In nonpoint source water pollution prob-
lems, this is driven largely by hydrologic inter-
actions, and previous work variously referred 
to such effects as “endogeneity” (Carpentier, 
Bosch, and Batie 1998; Khanna et al. 2003), 
“nonlinearity” (Rabotyagov et al. 2014; Shor-
tle and Horan 2013), “interdependence” 
(Randhir, Lee, and Engel 2000; Murdoch et 
al. 2007), and “nonseparability” (Rabotyagov 
et al. 2014) or “epistasis” (Maier et al. 2014; 
Kollat, Reed, and Kasprzyk 2008). As an ex-
ample, in Appendix section 0.6, we provide a 
derivation of the gamma-distributed routing 
hydrographs in a cascade of linear reservoirs 
system. From the derivation, one can see that 
the effect of placing a reservoir is dependent 
on the presence or absence of other reservoirs 
in the cascade. We discuss the similar under-
pinnings of interdependence in our sediment 
model below and present a simulation exam-
ple demonstrating the magnitude of these ef-
fects in our model in the Appendix.
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Given EAs’ inspiration by biology, and 
following Kollat, Reed, and Kasprzyk (2008), 
we adopt the term “epistasis” to refer to the 
potential interdependence across actions, 
since the term is used to describe “a phenom-
enon whereby the effects of a given gene on 
a biological trait are masked or enhanced by 
one or more other genes” (Moore 2005, 13). 
More broadly, one can speak about epistasis 
in terms of positive or negative externalities 
resulting from an action that affects the pro-
duction possibilities elsewhere. Strong epis-
tasis can drastically complicate market-based 
schemes for water quality trading (e.g., Shor-
tle and Horan 2013). Rabotyagov et al. (2014) 
discuss this issue but suggest that a nonpoint 
source water quality trading scheme can still 
be useful when epistasis is ignored, while Ku-
wayama and Brozović (2013) present a more 
complicated trading mechanism explicitly de-
signed to deal with epistasis present in trad-
ing groundwater, as hydrology provides for 
strong interdependence between decisions in 
the system.

Epistasis (interdependence) across deci-
sion variables has received a fair amount of 
attention in the broader field of evolutionary 
computation (Chen and Rajewsky 2007; Kol-
lat, Reed, and Kasprzyk 2008; Li et al. 2016). 
Sun (2017) suggests new methods of identi-
fying interactions and improving optimization 
algorithms. Undoubtedly, such approaches 
may prove very useful, but in the current ap-
plication, we essentially treat the objective 
function represented by a biophysical model 
as a “black box” (but see Wu et al. [2018] for 
an example of trying to “unpack” the structure 
of an ecohydrologic model).

In general, the presence of epistasis re-
sults in situation where the environmental 
benefit is not well represented by aggre-
gating incremental changes, even when the -
incremental changes account for the differ-
ential impact of individual actions on the en-
vironmental objective. For instance, in this 
application, outlet sediment is not character-
ized by the sum of incremental reduc-
tions in sediment: =≠ −∑0 1

( )
K

k kk
S X S b x , 

where S0 represents the sediment baseline and 
−= − = =0 ( 1,; 0)k k kb S S x x  represents the es-

timated incremental sediment reduction ben-

efit obtained by running the sediment model 
selecting one conservation action at a time, 
keeping all other candidate conservation sites 
at their baseline values. 

Weighted Benefit-to-Cost Ranking

At the same time, consider a simple multiob-
jective optimization problem, where the deci-
sion-maker wishes to choose n binary deci-
sion-making units Xk in order to

( )= = =− −∑ ∑ ∑1 1 1
min , ,  ,

n n n
i i i i i ii i i

b x xg xc  [2]

subject only to the requirement that all x ∈ 
{0,1}, where bi represents an independent 
sediment reduction ability benefit from a can-
didate site, and g is the duck hatchling coef-
ficient. Suppose one were to construct an in-
dex, for each xi where λ is the weight place 
on the sediment objective, r(xi) = λ(bi / ci) + 

λ λ λ= + − ∈( ) ( / ) (1 )( / ), [0,1]i i i i ir x b c g x , and sort this index 
in a descending fashion to obtain an ordered 
list and a corresponding ordered list of deci-
sion-making units ( )r kx , where, for example, 

(2)rx  denotes the decision-making unit with 
the second-largest index r. A corresponding 
decision vector 

(1) (2) ( ) ( ) { , ,  ,  , , }
{1,1 ,  ,1 ,  0,  0}

k r r r k r nx x x x= … … =

…

X

is then created. It has been known for some 
time (Cohon and Marks 1975) and it is easy to 
show (see the Appendix) that Xk is a member 
of the Pareto front associated with the objec-
tive function. In other words, one can show 
that there does not exist another decision 
vector that Pareto-dominates Xk (although 
other Pareto-efficient solutions may exist). 
We refer to this procedure as the weighted 
benefit-to-cost ranking(wBCR). Note that 
such procedures are referred to as “greedy,” 
especially in relation to single- and multi-
objective knapsack problems (see, e.g., Lust 
and Teghem 2012; Schulze 2017). Existence 
of hard constraints (e.g., with respect to cost) 
distinguishes knapsack problems from the 
problem we are considering, where the “gran-
ularity” of decision variables (potential con-
servation sites) is small enough that going 
down the list of wBCR solutions presents a 
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fairly dense trade-off frontier, and watershed 
planners can either find a point on the frontier 
that fits their budget (or attains the environ-
mental goals) closely enough or alternatively 
are only really concerned with identifying op-
timal trade-offs. Duke, Dundas, and Messer 
(2013) confirmed the optimality of simple 
benefit-to-cost ratio ranking for two-objective 
problems of landscape optimization with high 
granularity and linear and separable objective 
functions.

It is easy to imagine that the pres-
ence of epistasis may invalidate the effi-
ciency of the wBCR procedure. For exam-
ple, consider a “benefit” function such that 

= = … = = = …( 1; 1, ) ( 0,; 1, )j k j kB x x B x x  but 
>/   /  j j k kb c b c  (where incremental benefits 

are estimated using the ‘one-at-a-time’ proce-
dure), so that xj gets selected first according 
to the benefit-to-cost ranking. Yet, if a deci-
sion-maker decides to proceed down the list 
of ranked decision variables so that xk is se-
lected, unselecting xj would represent a strict 
Pareto improvement, meaning that a wBCR 
solution cannot be efficient. In other words, 
an action that was best given that some other 
action was not selected may no longer be ef-
ficient. A connection with hysteresis, or path 
dependence, can clearly be made in this case, 
but we leave the discussion of path depen-
dence in watershed optimization for future 
work.

Three potentially important questions 
emerge. First, to what degree is the simulation 
model epistatic in the sense that “the whole is 
not the sum of its parts”? In the applied water-
shed management or policy context, the inter-
est is often in assigning separable benefits as-
sociated with a particular conservation action. 
As discussed by Kling (2011) and Shortle and 
Horan (2013), separating the ‘abatement’ ben-
efits in such a manner facilitates the design and 
implementation of the traditional policy tools 
such as taxes, subsidies, or trading systems. 
However, the presence of epistasis may lead 
to such policies being inefficient or ineffective 
in the sense that pollution reduction may be 
either under- or overestimated. If epistasis is 
present, is there a consistent pattern that may 
be used in subsequent policy design? Is the 
nature of interdependence essentially one of 
negative interactions, or is there a possibility 

of positive interactions (which can be thought 
about as synergies in conservation effort)? 

Second, although the presence of epistasis 
can invalidate the Pareto efficiency of wBCR 
approaches, it need not do so. In that case, 
wBCR approaches (and the particular case 
of wBCR in two dimensions) as presented in 
numerous existing research (Feng et al. 2006; 
Murdoch et al. 2007; Ran et al. 2013; Duke, 
Dundas, and Messer 2013) may still hold 
significant optimization, interpretability, and 
policy design value, even when complex (and 
epistatic) simulation models are used.1

Third, what is the relationship between 
wBCR and EA approaches? Does the use 
of wBCR have the potential to improve the 
performance of EA in realistic applications 
with very large search spaces? And, in turn, 
can the EA build upon the optimization logic 
embedded in wBCR but improve upon wBCR 
solutions by exploiting the epistatic structure 
of the simulation model? The first part of the 
question relates to the notion of “seeding” the 
EA with a priori known or otherwise obtained 
members of the Pareto front. Recent examples 
of using “good seeds” in multiobjective EAs 
are provided by Hernandez-Diaz et al. (2008), 
Truemper (2016), and Friedrich and Wagner 
(2015). The basic intuition is that EAs are in 
a sense “blind,” and the human researcher can 
use logic, specific domain knowledge, and 
other mathematical approaches to pass to the 
EA an “intelligent paradigm” (see Truemper 
2016) that can steer the EA in the right direc-
tion and improve its performance. The con-
sensus in the literature is that if one is able to 
provide a good set of initial solutions as seeds 
in the EA population, the EA performance 
is typically improved by a nontrivial amount 
(Friedrich and Wagner 2015), with Bi, Dandy, 
and Maier (2015) showing it in an applied wa-
ter resources context.

The answer to the first question (on the na-
ture of epistasis) in large part guides the likely 
answers to the questions on whether wBCR 
approaches can still be directly useful for opti-
mization and policy design (second question), 

1 For an applied conservation example, see trade-offs 
developed in wBCR fashion by B. Bryant and C. Weil at 
https://charlottegiseleweil.github.io/webviz_natcap/intro.
html.
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or whether the construction of solutions based 
on wBCR can be useful as starting values for 
EA optimization (third question). Although 
the simulation models may be complex and 
not lend themselves easily to comparative 
static analyses, the domain of these mod-
els and their theoretical underpinnings can 
provide a great deal of insight. As a thought 
experiment, consider a somewhat contrived 
example of selecting household chemicals for 
cleaning. Both bleach and vinegar can be used 
separately (and could be assigned separate 
benefit-to-cost ratios), yet one should never 
choose one of these chemicals given that the 
other one is being used, in order to avoid the 
production of noxious gas.2 In this case, the 
magnitude of the interaction is large enough to 
turn the benefit of an isolated option negative. 
In such cases, constructing benefit-to-cost ra-
tios based on separate estimates of benefits is 
not useful. Most interaction effects in conser-
vation or nonpoint source pollution problems 
are expected to be bounded so that the main 
effect of a conservation action could poten-
tially be driven to zero but is not likely to be 
negative. Exceptions could be envisioned in 
cases where the site of a conservation action 
may become a pollution source depending 
on other actions in the watershed (examples 
may include the changes in production of 
greenhouse gas methane [Zhang et al. 2017] 
or toxic methylmercury in restored wetlands 
[Strickman and Mitchell 2018; Metcalfe, 
Nagabhatla, and Fitzgerald 2018]). Such pos-
sibilities should be elucidated at the outset by 
biophysical component modelers and should 
help guide the expectations regarding the util-
ity of wBCR approaches.

In our application, the model structure does 
not allow for either “catastrophes” or “magic 
bullet” solutions for either sediment or wild-
life. The scale of locations represented by de-
cision variables is small and we do not expect 
any one location to have a major impact on 
the effectiveness of actions at other locations. 
Given these considerations, we conjecture 

2 As explained, for example, at https://www. goodhouse 
keeping.com/home/cleaning/tips/a32773/cleaning- prod 
ucts-never-mix/. Of course, many other examples of fairly 
dramatic epistatic effects can be offered. The common fea-
ture is the degree of importance of taking the whole-system 
perspective.

that the nature of individual-level epistatic ef-
fects in our application is small, so the wBCR 
procedure is likely to prove useful. Given the 
number of decision variables and the struc-
ture of the simulation model, we expect that 
adopting the intelligent paradigm of seeding 
the EA with wBCR-derived solutions is likely 
to improve the performance of the simula-
tion-optimization heuristic. At the same time, 
it is not a priori clear whether the wBCR-de-
rived solutions can withstand the challenge by 
EA iterations, so the direct policy relevance of 
wBCR is a more open question.

3. Empirical Application

Study Area

The Le Sueur River watershed, located in 
southcentral Minnesota, is one of the 12 ma-
jor watersheds in the Minnesota River Basin. 
Ecological health and aesthetics of the Min-
nesota River and its tributaries are affected by 
excess suspended sediment, measured as total 
suspended solids (TSS) (Belmont et al. 2011; 
Schottler et al, 2014). An increased TSS results 
in higher water turbidity, lower light penetra-
tion, and, consequently, bloom of undesirable 
floating algae, causing degradation of aquatic 
habitats, loss of biodiversity, and impairment 
of aesthetic quality. The water quality issues 
have been exacerbated in the past 150 years 
due to an ongoing expansion of cropland and 
altered watershed hydrology (Belmont et al. 
2011; Gran, Belmont, and Day 2011). For 
example, sediment in Lake Pepin, a naturally 
dammed lake on the mainstem Mississippi 
River, downstream from its confluence with 
the Minnesota River, has increased by an or-
der of magnitude since 1830 (Engstrom, Al-
mendinger, and Wolin 2009), with 90% of the 
loads originating from the Minnesota River. 
Further, the Le Sueur watershed, as part of the 
Prairie Pothole Region, is an important habitat 
for waterfowl, but with the expansion of crop-
land and conversion of habitat to agricultural 
fields, the populations of some species have 
suffered a decline (Reynolds et al. 2001).

There are over 30 lakes in the Le Sueur 
River watershed with 1,200 miles of streams, 
including the Maple, Cobb, and Little Le 
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Sueur Rivers (Kudelka 2010). The Le Sueur 
River watershed is mostly rural, with 82% of 
the land under agricultural cultivation (Gran 
et al. 2011). The watershed is the largest con-
tributor of sediment to the Minnesota River, 
delivering up to 30% of the river’s annual 
sediment load, although it drains only 6% 
of the basin area (about 1,112 square miles) 
(Boettcher 2015). 

Sediment Model

To model the effect of conservation actions 
on sediment reductions, we use a watershed 
simulation model, the management options 
simulation model (MOSM), developed by 
Cho et al. (2019). The MOSM simulates the 
movement of water and sediment across a 
watershed and evaluates the effects of various 
management options on sediment delivery 
and loading. It is a reduced-complexity model 
in which many components (i.e., spatial and 
temporal grids, and number of interacting 
state variables) and the degree of complexity 
(i.e., range of physical, chemical, and biolog-
ical processes) have been reduced to include 
only those processes essential to represent the 
sediment transport and surface water routing. 
MOSM is data driven, such that it distributes 
the results of the physical processes from ob-
served data, and its structure and predictions 
are constrained by the best-available existing 
information, including stream gaging records, 
an integrated watershed sediment budget, his-
torical trends in watershed processes, and in-
dependent measures of outputs, such as sedi-
ment fingerprinting and a suite of geomorphic 
change detection outputs. 

The MOSM consists of two computational 
modules: hydrologic routing, and sediment 
delivery and loading with a set of manage-
ment options addressing agricultural field 
erosion, water conservation, and near-channel 
sediment loading (Appendix Table A1).

First, the hydrologic routing module sim-
ulates the changes in the time and magni-
tude of peak river discharge, resulting from 
the water conservation management option 
(WCMO) and the in-channel management 
option (ICMO). Hydrologic routing consists 
of a level-pool routing procedure to calculate 
the outflow hydrograph from the WCMO and 

ICMO, and a river routing procedure to evalu-
ate the downstream river hydrology. With the 
simulated river discharge, the MOSM applies 
the near-channel sediment supply (NCSS) 
model (Cho et al. 2019) to estimate the sed-
iment loading reduction in the incised river 
corridors of the Le Sueur River basin, where 
near-channel sources (e.g., streambanks and 
bluffs) are dominant.

Second, the MOSM utilizes high-reso-
lution topography through TopoFilter sim-
ulation (Cho, Wilcock, and Hobbs 2018) to 
estimate the on-field and in-stream sediment 
delivery ratios (SDRs) and loading across the 
watershed by integrating spatially distributed 
information about soil loss to the integrated 
sediment loading at the watershed outlet. The 
sediment delivery and loading module evalu-
ates the effects on sediment delivery and load-
ing from (1) reducing soil erosion with the 
tillage management option (TLMO); (2) re-
ducing on-field sediment delivery with the ag-
ricultural field management option (AFMO), 
WCMO, and buffer management option 
(BFMO); and (3) reducing near-channel 
source erosion with the ravine management 
option (RAMO) and near-channel bluff man-
agement option (NCMO) (Appendix Table 
A1). For more information about the MOSM, 
refer to Cho et al. (2019).

The MOSM, although a reduced-complex-
ity model, is nevertheless expected to exhibit 
epistatic behavior in relation to the manage-
ment options that affect water storage. As de-
scribed by Cho et al. (2019), daily peak flow 
control is key to reducing in-channel-gener-
ated sediment, and field and in-channel wa-
ter storage can accomplish this goal by both 
direct attenuation and delay (e.g., Appendix 
section 0.6).3 

The conceptual source of epistasis in our 
sediment model is hydrologic interdepen-
dence of water-storing features along hydro-
logic flow-paths in the watershed, especially 
as it manifests itself in reductions in peak 
flows (the main physical driver of near-chan-
nel sediment in our model). In Appendix sec-
tion 0.6, as an example of how sequential wa-
ter reservoirs reduce (and delay) peak flows, 

3 See also NRCS hydrology at https://www.wcc.nrcs.usda.
gov/ftpref/wntsc/H&H/NEHhydrology/ch17.pdf.
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we include a “classic derivation” (in the words 
of Hansen et al. [2003]) in hydrology that 
shows that the effect of placing a reservoir in 
a flow-path depends on the presence of other 
reservoirs upstream or downstream. 

Wildlife Model

For the wildlife conservation objective of 
increasing waterfowl populations, we use a 
modification of the model recently used by 
the U.S. Department of Agriculture to esti-
mate economic benefits of wetland conserva-
tion in the Prairie Pothole Region. The model 
for estimating duck hatchlings (H) affected 
by the wetland restoration option (WCMO) 
is a function of the nesting pairs (NP), nest 
success (NS), renesting propensity (NI), and 
clutch size (CS) (Hansen et al. 2015):

= × × × .H NP NS NI CS  [3]

An additional factor, if one is focused on 
adult duck numbers, would be the one asso-
ciated with survival from hatchlings to adult 
ducks (referred to as the reproductive suc-
cess). It contains two aspects, the survival 
from hatching to fledging and the postfledg-
ing survival to recruitment, and is often mea-
sured by the number of offspring that enter the 
breeding population (Dzus and Clark 1998). 

The use of existing nesting pair and nest 
success models, as well as field survey data 
(Reynolds et al. 2001, 2006; Mayfield 1975; 
Baldassarre 2014), allows us to generate es-
timates of these parameters for the five duck 
species (mallard, gadwall, blue-winged teal, 
northern pintail, and northern shoveler) in the 
Le Sueur River watershed (see Appendix sec-
tion 0.3).

We should note that the model as outlined 
by Hansen et al. (2015) has the potential to 
be epistatic, as it takes, as its input, the grass-
land area surrounding a restored wetland 
(WCMO). To the extent that some other man-
agement option in our model may alter grass-
land area (e.g., WCMO, AFMO, BFMO), the 
grassland area becomes itself endogenous 
and induces epistasis in the model. However, 
the effect of surrounding grassland area is of 
secondary importance in the duck production 

model, and in this paper we abstract from this 
issue and use the model as nonepistatic and 
linear and separable in the discrete WCMO 
adoption decision variables.

4. Optimization and Seeding

Cost Assumptions

For the management options simulated, we 
largely maintain the cost assumptions devel-
oped by Cho et al. (2019), modifying those 
in two ways. First, based on Wade, Kurka-
lova, and Secchi’s (2016) econometric es-
timates of costs of tillage adoptions, we use 
$15/acre/year as the assumed cost of reduced 
tillage and $30/acre/year as the assumed cost 
of conservation tillage management options. 
Those costs are used for the 4,626 TLMO 
candidate sites in the watershed. Second, for 
the cost of agricultural land conversion (rele-
vant for AFMO, BFMO, and WCMO), we use 
area-specific real options estimates reported 
by Schroder, Lang, and Rabotyagov (2018) 
(Appendix Table A2). For the installation and 
management costs of the remaining manage-
ment options, we use the estimates reported 
by Cho et al. (2019) (Appendix Table A3). 

Creating Seeds

We estimate the incremental benefit from each 
of the modeled management options by run-
ning the simulation model one management 
option at a time (for each of 16,891 manage-
ment options simulated) and computing the 
estimated sediment reduction benefit and the 
duck hatchling increase. Most of our man-
agement options are formulated as binary de-
cisions, with the exception of tillage, where 
both reduced tillage and conservation till-
age represent available conservation actions 
at cropland polygons in the watershed. For 
TLMO genes, the model was run on reduced 
tillage and conservation tillage, and those op-
tions were ranked using a benefit-to-cost ratio 
first. Uniformly, reduced tillage was a more 
efficient option, and a binary decision of con-
tinuing with baseline conventional tillage or 
adopting reduced tillage was left for the rank-
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ing procedure’s consideration. For each gene 
and a weight on sediment reduction, λ, ranging 
from 0 to 1 in increments of 0.1, a weighted 
benefit-to-cost ratio was computed and scaled 
by multiplying it by 1,000 to avoid very small 
numbers. As a result, the ratio is expressed 
in kilograms per year of sediment reduction, 
and in 1 duck hatchling per dollar. The results 
were sorted for each λ in descending order. To 
create solutions based on wBCR, we selected 
top genes for each weight in increments of 
100, assigning a “select” gene encoding to the 
top locations. The procedure resulted in 1,848 
seeds being used.

EA Frontiers

Using the EA multiobjective optimization 
heuristic, we estimated three Pareto frontiers, 
running the algorithm to the consolidation 
ratio (share of solutions in the undominated 
archive looking 10 generations back present 
in the current generation) of 0.99 (Goel and 
Stander 2010). The first (F0) started with a 
population of randomly generated solutions 
and did not incorporate any seeds that utilize 
domain-specific information or any sort of 

“intelligent paradigm.” The second frontier 
(Funif ) included seeds that represented a zero 
cost baseline scenario, an “everything, every-
where” scenario, and solutions representing 
a uniform application of each of the MOSM 
options to the available candidate sites. The 
third frontier, Funif+wBCR, used the 1,848 
wBCR seeds in its initial population, as well 
as the seeds present in the Funif frontier; 1,848 
random seeds were inserted in the F0 and Funif 
initial populations to control for any effect of 
population size. All algorithms created a tem-
porary population of 16 individuals per gen-
eration and used a single-point crossover with 
1.0 probability, and a mutation rate of 0.003 
was applied (with 16,891 × 0.003 = 51  ex-
pected random changes in every individual).

5. Results

Epistasis: Evaluation of wBCR Using the 
Simulation Model

The evaluation of wBCR demonstrates the 
effect of epistasis in the sediment model, in 
the sense that “the whole is not the sum of its 
parts” ( =≠ −∑0 1

( )
K

k kk
S S b xX ). Simply add-

Figure 1
Overestimation of Sediment Reduction Benefit by the Linearized Sediment Reduction Function (left); 

Estimated Extent of the Scaling (Attenuation) Coefficient Needed to Adjust the Linearized Sediment Reduction 
Function Downward to Match Management Options Simulation Model Calculations (right)
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ing the separate abatement benefits of each 
part generates the result that the total sedi-
ment reduction surpasses the sediment base-
line. Figure 1 (left) shows all the nondom-
inated solutions from scenario where λ = 1, 
that is, considering only the cost and sediment 
in the objective space, where the epistasis is 
depicted by the overestimation of sediment 
reduction by the linearized version of the 
model ( => −∑0 1

( )  
K

k kk
S S b xX ). Thus, there 

exists an attenuation of sediment reduction 
benefits as more effort is devoted to sediment 
reduction (a common finding in sediment re-
duction applications, as shown by Ran et al. 
[2013]). 

Similarly, we compared the wBCR solu-
tions based on linearization of sediment and 
duck benefits with the same wBCR-generated 
solutions evaluated via the MOSM and duck 

production models for the entire range of sed-
iment objective weights (λ = 0 to λ = 1). Since 
the duck production model is not epistatic, the 
results are identical for the λ = 0 case. However, 
as the weight placed on sediment increases, 
the divergence between the two frontiers 
grows (Figure 2).4 Since adding individual 
sediment reduction benefits overestimates the 
model-estimated benefit, at a certain point 
linearized benefit even surpasses the baseline, 
resulting in unreasonable (negative) values 
of outlet sediment (baseline less estimated 
sediment reduction).

One can further quantify the extent of epis-
tasis present by finding, for a particular level 

4 Visualization available at https://dataverse.harvard.edu/
dataset.xhtml?persistentId=doi:10.7910/DVN/HIBNRC 
(3d-lambdaBCR.html).

Figure 2
Pareto Front Estimated Using the wBCR Method, with Objectives Evaluated via Linear  

Approximation (black) versus Objectives Evaluated Using Simulation Models (gray)
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of λ and cost, a scaling coefficient μ(C, λ), 
which would result in

µ λ == − ∑0 1
( ) ( ,  ) .

K
k kk

S S C b xX  [4]

For example, for the case of λ = 1 we plot such 
scaling ratios as a function of desired sediment 
reductions (and the associated cost) in Figure 
1 (right). The scaling ratio generally decreases 
with desired sediment abatement, although the 
empirical pattern is not monotone. Based on 
the differences between the two wBCR fron-
tiers in our case, it is possible to “correct” for 
the epistasis in the linearized wBCR by scal-
ing down the individual sediment reduction 
coefficients before doing the linear summa-
tion. We do point out that the epistasis adjust-
ment depends on the specific level of desired 
sediment reduction, and a generally decreas-
ing pattern in the adjustment factor is intuitive: 
at very low sediment reduction levels, efficient 
management options affecting water storage 
can be found in hydrologically independent 
locations and no adjustment is necessary; yet 
as desired sediment reductions grow, selecting 
more management options in connected flow 
paths becomes necessary, and accumulated re-
dundancy in terms of water storage manifests 
itself in larger attenuation (smaller scaling 
coefficient). For example, for the 20% sedi-
ment reduction, the effects of epistasis seem 
trivial, so the adjustment will also be insig-
nificant (scaling ratio ≈ 1). However, for the 
50% sediment reduction, we should consider 
multiplying the sediment coefficients by a 0.8 
scaling ratio to correct for the benefit overes-
timation caused by epistasis. In practice, one 
could develop approximate scaling ratios as 
functions of desired abatement levels and the 
appropriate weights given to different objec-
tives (a sample quadratic epistasis adjustment 
function for λ = 1 is shown in Figure 4). Such 
adjustments can be used in the development 
of effective (although second-best) incentive 
policies such as taxes, subsidies, or trading 
schemes that would not overestimate an 
individual action’s contribution to pollution 
reduction at the watershed outlet. Note that 
the scaling relationship is distinct from the 
often discussed “delivery ratio,” as linearized 
incremental benefit estimates already im-

plicitly incorporate such delivery ratios by 
evaluating sediment at the watershed outlet.

6. Estimated Frontiers

Poor Performance of Unseeded EA

Figure 3 presents the projections of the es-
timated Pareto fronts in sediment-cost and 
duck-increase-cost spaces. The first thing we 
note is that the estimated Pareto front discov-
ered by the EA in a completely unguided fash-
ion, F0, is quite inefficient. Although it man-
ages to converge, in part, to the Funif front at its 
lower envelope in sediment-cost space (Fig-
ure 3, diamond marker front [or see the purple 
front in Appendix Figure A4] approaching the 
lower envelope of Funif at around 50,000 tons 
of sediment level), it fails to do so in the duck-
increase-cost space in a fairly dramatic fash-
ion, where the projections of the two fronts do 
not even overlap. Furthermore, the unseeded 
approach fails to provide good coverage of the 
objective space. We can be fairly confident in 
not recommending running EA heuristics on 
a realistic problem without incorporating any 
domain-specific knowledge about the nature 
of trade-offs.

Although the presence of epistasis led the 
linearized wBCR to overestimate sediment 
reduction in the objective space, 90% of the 
wBCR solutions are still nondominated after 
the challenge by the EA. This means that in 
our example, the Pareto efficiency of wBCR 
approaches (in terms of its ability to find the 
solutions in the decision space) has largely 
been maintained in the presence of epistasis. 
Sediment abatement is concave in effort, sug-
gesting that adoption of a management option 
attenuates the sediment reduction benefit at 
other management options as compared to 
the incremental benefit estimated in isolation. 
However, this attenuation does not appear to 
drive individual management options’ sed-
iment reduction to zero, as that could cause 
the EA to exploit such effects and eliminate 
wBCR-based solutions from the Pareto front. 
Thus, the wBCR approach, efficient under in-
correct assumptions regarding the sediment 
objective function, is mostly efficient under 
the simulation approach as well.
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Benefits of Seeding

First, we see that the seeding approach we re-
lied upon previously (e.g., Rabotyagov, Jha, 
and Campbell 2010) clearly outperforms the 
unseeded EA results, with Funif clearly more 
efficient than F0. However, given the very large 
search space in our applied problem, we can 
improve upon Funif by incorporating solutions 
obtained using the wBCR approach. In fact, 
seeding the EA simulation model with wB-
CR-derived solutions does improve the perfor-
mance of the EA in our application. Compar-
ing Funif+wBCR with Funif, Funif+wBCR generated 
solutions that dominate the ones from Funif, 
supporting our hypothesis that adding our 1,848 
wBCR seeds would significantly improve EA 
performance in both the sediment-cost and 
duck-cost dimensions. Efficiency gains are 
not trivial: for example, at the 100,000 tons/
year sediment loading level (roughly a 53% 
reduction in sediment),  Funif+wBCR contains 
solutions attaining that level at about the cost 
of $15 million annually, while the Funif frontier 
dictates expenditures of upward of $27 million 
(a 45% inefficiency). Similarly, in the duck-
cost space, obtaining 30,000 hatchlings is es-
timated to cost $16 million in the Funif+wBCR 
frontier, with roughly double that cost found in 
the Funif front. Compared to a limited seeding 
approach, the magnitudes of efficiency gains 
from using wBCR-derived seeds are large. Not 
surprisingly, the gains are largest in the middle 

of the objective space, as Funif “pins down” 
the endpoints of the Pareto front by using the 
zero cost baseline and the “everything, every-
where” scenario.

Even though the wBCR method does not 
necessarily result in Pareto-efficient solutions, 
we find that using the method to initialize the 
EA search improves EA performance sub-
stantially, and that the method produces solu-
tions, 90% of which survive the EA challenge. 
The practitioners of EA-inspired simulation 
optimization may wish to generate scenarios 
based on wBCR or similar methods appropri-
ate to their problem and test their efficiency 
in the EA framework. Running EAs already 
requires that the researchers do the (often sub-
stantial) work of being able to iteratively run 
the relevant simulation models, so the mar-
ginal cost of testing wBCR seeds (in addition 
to other scenarios that may be conjectured to 
perform well) is likely to be small. The ben-
efits are twofold. If the problem is similar 
to the one we analyze here, large efficiency 
gains are possible compared to unseeded EA 
approaches. Even if wBCR solutions do not 
perform well, the researcher will have more 
confidence in interpreting and communicat-
ing EA results knowing that those results 
have been compared to the wBCR approach 
directly.

In fact, in our application, upon completion 
of the analysis, one can argue that the use of 
an EA for optimization is largely redundant, 

Figure 3
Estimated Pareto Fronts (Seeding Benefits)
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as a Pareto front of reasonable quality could 
be obtained by (1) running the model in a 
one-at-a time fashion to obtain incremental 
benefit estimates for each decision-making 
unit, (2) constructing the wBCR and sort-
ing the decision-making units in a descend-
ing fashion, and (3) running the model for 
the solutions obtained via the sorting proce-
dure to produce the trade-off frontier in ob-
jectives space. This finding is not expected 
to hold in general for all environmental (and 
water quality in particular) models. However, 
we believe that several features of the model 
employed in this application contribute to 
such finding. First, by design, the wildlife 
objective in the model is nonepistatic, and 
wBCR procedure can find efficient solutions 
along this dimension (λ = 0) exactly. Second, 
for sediment-reducing options that did not 
involve hydrologic routing, interaction 
(epistasis) effects were abstracted away at the 
stage of MOSM design. Finally, individual 
management options involving water storage 
(and thus expected to exhibit epistatic effects) 
are small compared to the overall scale of the 
watershed, and a selection of a single particular 
wetland, while decreasing the incremental 
effectiveness of other candidate wetlands, 
did not do so in a manner (1) strong enough 
to reduce the incremental effectiveness of 
another wetland to 0 and/or (2) disparately 
enough across candidate wetlands to be able 
to reverse the wBCR rank order. Thus, we 
conjecture that for models exhibiting similar 
characteristics, linearizing the model for 
purposes of optimization may be acceptable 
(although the performance of the solutions 
should still be simulated using the original 
process model), while applications involving 
decision-making units that are expected to 
be both interdependent and individually 
significant in terms of overall objectives 
may benefit from the wBCR procedure as a 
seeding paradigm, yet may require additional 
computational effort in exploiting epistatic 
effects in simulation optimization.

Selected Efficient Solutions

As we mention above, 90% of the wBCR solu-
tions survived after the EA iterations and be-
came members of the Funif+wBCR frontier. The 

weight λ represents the relative importance 
of duck hatchlings increase over sediment 
reductions in the wBCR method. Thus, a 
convenient consequence of most wBCR 
solutions surviving in the best estimated 
Pareto front is that solutions can be directly 
interpreted in light of the weight given to the 
environmental benefit objectives. When λ 
= 1, sediment reduction is the only priority, 
while λ = 0 means that we care only about 
increasing the duck population. At the same 
time, this means that at a roughly same level 
of cost, by choosing different values for λ, the 
solutions demonstrate the presence of trade-
offs or synergies in the benefit dimension. For 
example, if we focus on the solutions at the 
level of the cost associated with a 30% sediment 
reduction at λ = 1, then such exclusive focus 
on sediment has a cobenefit of 587 ducks 
produced. However, at a similar cost level, the 
cobenefit of duck production goes up to 3,681 
hatchlings for the solutions obtained using an 
equal weight on 1 ton of sediment decrease or 
a 1 duck hatchling increase (λ = 0.5). At the 
same time, one sacrifices only 1 percentage 
point in terms of sediment reduction (solution 
#1800050 obtaining a 29% sediment reduction 
versus solution #1100100 leading to a 30% 
sediment reduction). Focusing on ducks at the 
intermediate level ($4 million per year cost) can 
deliver less than a third of potential sediment 
reductions (9% sediment reduction). At the 
significantly higher cost level of over $26 
million (associated with a Le Sueur Watershed 
Council goal of a 65% sediment reduction), 
the trade-offs are much less pronounced, as the 
intensity of management option adoption leads 
to a greater extent of cobenefits (synergies in 
environmental benefits).

These features of the solutions in the Pa-
reto frontier emerge as a result of the structure 
of the management option evaluated. WCMO 
is the only management option that directly 
benefits duck production, so when λ = 0, the 
efficient solutions choose only WCMOs. 
Ten percent, 45%, and 90% of WCMOs are 
chosen, respectively, with a similar cost level 
for 10%, 30%, and 65% sediment reduction. 
The proportions of WCMOs are 0%, 2%, 
50% for λ = 1 and 0%, 15%, 70% for λ = 0.5, 
which indicate that WCMOs become a less 
cost-efficient option as we put more weight 
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on sediment reduction. Instead, the ravine 
stabilization option (RAMO) has a 25%, 92%, 
97% rate of selection at λ = 1 and 25%, 92%, 
97% at λ = 0.5, which implies its relatively 
high cost-efficiency for sediment reduction. 
Meanwhile, the grass buffer option, BFMO, 
also plays a relatively important role in 
sediment reduction since it has 5%, 30%, 40% 
rates of selection for both λ = 1 and λ = 0.5.

Appendix Figure A6 shows the spatial 
pattern of management options selected for 
three different cost levels and weights placed 
on sediment and duck objectives. Figure 4 and 
Appendix Figure A6 taken together indicate 
several interesting features of management 
option selection in the study watershed. First, 
in-channel management (ICMO) is never 
efficient to select (due to its high estimated 
cost and limited effectiveness in storing wa-
ter). Second, ravine stabilization (RAMO) 
is highly cost-effective for sediment control, 
and almost all candidate sites are selected 
even for moderate (30%) sediment reduction 
targets. At the same time, wetland restoration 
(WCMO) is not a cost-efficient option when 
the focus is exclusively on sediment, and 
moderate sediment reductions can be attained 
largely without any reliance on that option. 
Third, wetland restoration becomes necessary 

for the attainment of the stated watershed goal 
of 65% sediment reduction, with roughly half 
of the WCMO candidate locations restored, 
which leads to significant cobenefits in duck 
production (over 60% of maximum attainable 
hatchlings at that cost level). Yet, for the cost 
of attaining a 65% sediment reduction goal, 
virtually all restorable wetland sites could be 
converted, with large benefits for duck popu-
lations (yielding a concomitant 45% sediment 
reduction). Finally, the state of Minnesota re-
cently adopted a regulatory policy of requiring 
riparian buffers (akin to the BFMO in our pa-
per). We find that 100% adoption of BFMOs 
is not an efficient strategy, yet when sediment 
reduction is the goal, selecting a sizeable por-
tion of candidate BFMO sites is cost-efficient.

Each individual map in Appendix Figure 
A6 can be viewed as showing the least-cost 
locations and combinations of conservation 
actions for a certain scenario in terms of sedi-
ment reduction and duck hatchling increment. 
The results show expected spatial patterns in 
terms of sediment-reducing actions concen-
trating near the watershed outlet and the river 
network, and the pattern is fairly robust with 
respect to relaxing the assumptions about in-
dividual benefit and cost estimates (Appendix 
section 0.7). We did not attempt to collapse 

Figure 4
Distributions of Selected Management Options (MOs) for Different Weights  

on Sediment and Duck Objectives for the Solutions in Table 1
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the objective function into a single monetized 
metric, which would require models simulat-
ing the impact of a particular landscape con-
figuration on all the relevant ecosystem ser-
vices coupled with a model estimating the full 
economic value of the resultant pattern of eco-
system service provision. Still, a crude incor-
poration of existing value estimates for sedi-
ment reduction in the broader study region as 
well as the monetized value of ducks could be 
of interest. For example, Hansen et al. (2015) 
assess multiple studies of the economic value 
associated with duck hunting and use a value 
of $106 (in 2015 dollars) per bagged duck in 
their estimates of the monetary value of wet-
lands. To transfer the wetland’s ecosystem 
service of duck hatchlings improvement to 
the economic values for duck hunting, they 
first applied a harvest rate of 5% (varying 
by duck species) to obtain the estimation of 
bagged ducks from hatchlings, and then mul-
tiplied it by the amenity value of $106 per 
bagged duck to estimate the total duck-hunt-
ing benefits. In our context, then, the expected 
value of an additional duck is approximately 
$5.00, or $2.50 (assuming a survival rate of 
0.5) for each additional hatchling. So a total 
of 30,000 hatchlings, for instance, would re-
sult in around $0.75 million in hunting value 
benefits, reducing our minimum cost value of 
approximately 25 million by 3%. Similarly, 
for sediment reduction, Parveza et al. (2016) 
estimate the average monetary value of sed-

iment reduction of $2.32 per ton, expressed 
in constant (year 2000) dollars. Applying a 
5% inflation rate, the 2018 inflation-adjusted 
value would be around $5.56 per ton. As a 
consequence, a 50% sediment reduction can 
generate about $0.6 million in benefits, for 
a cumulative 5.5% cost reduction. Clearly, 
such a grossly simplified valuation approach 
misses many other ecosystem services being 
generated from identified landscape patterns 
(e.g., nitrogen or phosphorus reductions, flood 
control benefits), yet it highlights the need for 
both the incorporation of more comprehen-
sive models of ecosystem services and valu-
ation approaches in future work.

As in many similar studies (approximately) 
cost-efficient patterns of watershed conserva-
tion actions have been identified, including 
notional water quality objectives identified 
locally (a 65% sediment reduction in our ap-
plication). At least three challenges loom in 
the policy realm: identifying or refining, in 
light of findings, the specific environmental 
targets desired by or acceptable to the local 
stakeholders and decision-makers; finding 
financial resources to support voluntary con-
servation actions among private landowners; 
and implementing a targeted policy capable 
of approximating efficient watershed solu-
tions. At the very least, we find that by using 
a simple wBCR scheme, we can improve the 
circumstances surrounding those challenging 
decisions.

Table 1
Selected Solutions from the Estimated Pareto Frontiers

Solution ID
Sediment 

Reduction (%) Duck Increase Cost ($/year)

At the Cost Level of 10% Sediment Reduction

λ = 1 100100 10 0 573,057.62
λ = 0.5 100050 10 0 573,057.62
λ = 0 800000  1 2,322 549,465.35

At the Cost Level of 30% Sediment Reduction

λ = 1 1100100 30 587 4,096,251.4
λ = 0.5 1800050 29 3,681 4,043,706.9
λ = 0 3600000  9 12,526 4,069,299.4

At the Cost Level of 65% Sediment Reduction

λ = 1 5900100 66 23,386 26,598,914.96
λ = 0.5 7200050 65 29,110 26,831,805.06
λ = 0 7200000 45 37,999 26,452,110.12
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7. Conclusions and Future 
Directions

Simulation models are important in assessing 
the effectiveness and efficiency of landscape 
conservation actions and will likely grow in 
importance and relevance to environmental 
economics and the conservation community. 
Models shift the nonpoint-source pollution 
problem to a more manageable problem by 
helping to identify both the sources of pollu-
tion and the actions for pollution abatement. 
Despite the legitimate concerns associated 
with overparameterization and fundamental 
epistemic uncertainty in water quality and 
ecological models (see, e.g., Beven 2006), 
models are indispensable in nonpoint-source 
pollution research and policy proposals (see, 
e.g., Brown et al. [2015] in the context of wa-
ter resources). In our application, we use a 
custom-built sediment model highly specific 
to the study watershed, but more generaliz-
able modeling tools can provide the simula-
tion component in simulation-optimization 
work and have been used elsewhere.

Once a simulation and scenario evaluation 
framework has been built, allowing assess-
ment of scenarios of interest and setting the 
stage for optimization and trade-off analysis, 
care needs to be exercised in using EA heuris-
tics. Many realistic applications ask for eval-
uation of problems with a very large search 
space. Adopting an EA heuristic can help in 
dealing with such issues, but similar to other 
research, we have shown that management 
option EAs can get bogged down and produce 
trade-off results that are not efficient. In our 
application, if we do not incorporate any do-
main-specific knowledge in terms of seeding, 
the algorithm produces results with a plausible 
shape for a Pareto frontier, yet those results 
are grossly inefficient. Incorporating more 
knowledge in the form of seeds brings suc-
cessive improvements in performance. Some 
have referred to producing seeds as using an 
“intelligent paradigm” (Truemper 2016). We 
show that using more sophisticated versions 
of the intelligent paradigm (going from sev-
eral seeds, which include likely end points of 
the Pareto front, to utilizing wBCR ) produces 
marked improvements in efficiency.

In our context, the relatively familiar in-
telligent paradigm of using (weighted) bene-
fit-to-cost ratios in large part produces solu-
tions on the estimated Pareto frontier, with 
the EA using this information to fill out the 
Pareto frontier. Only 10% of wBCR solutions 
are subsequently dominated by the solutions 
found by EA. We cannot expect this to be a 
fully general phenomenon. That is, we expect 
that there will be instances where producing 
seeds based on a linearized approximation of 
the simulation model will prove to be fruit-
ful in terms of improving efficiency, yet those 
solutions themselves may not survive to be 
members of the final estimated Pareto frontier. 
Even if the latter proves to be the case, results 
produced by EAs can sometimes be counterin-
tuitive and difficult to interpret, both in terms 
of procedure used to generate the results and in 
terms of rationalizing the results in a manner 
consistent with researchers’ and stakeholders’ 
a priori expectations on what conservation ac-
tions should be chosen and where they should 
be implemented. At the same time, bene-
fit-cost rules, often described in terms such 
as “benefit per dollar,” “bang for the buck,” 
or “return on conservation investment,” are 
fairly well known even outside the research 
community and are regularly used in describ-
ing efficient allocation of limited conservation 
budgets to various stakeholders. Even taken in 
isolation of any optimization considerations, 
this suggests that it may be useful to generate 
solutions based on benefit-cost rules and to 
evaluate and challenge them in a simulation 
framework. In the current application, most 
of these “greedy” solutions survive the chal-
lenge, and solutions can be described directly 
in terms of the (weighted) benefit-to-cost ratio 
ranking procedure and the associated weights 
placed on different environmental objectives. 
In general, it may be the case that epistasis in 
the biophysical model is exploitable by the al-
gorithm and greedy solutions get supplanted 
by solutions generated by an EA. Under those 
circumstances, the researchers and stakehold-
ers can still be confident that a reasonable 
solution procedure has been tested and that 
EA solutions may inherit useful characteris-
tics from the well-known ranking procedure.

In short, our findings suggest that an often 
useful precursor to undertaking an optimiza-
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tion heuristic such as an EA is to construct 
solutions that employ the (weighted) bene-
fit-to-cost greedy ranking procedure. Then 
using these solutions one can (1) assess their 
performance using the simulation model em-
ployed, and (2) pass these solutions to the 
optimization heuristic as a way to both chal-
lenge the “conventional wisdom” embedded 
in benefit-to-cost ranking and provide the op-
timization heuristic with a set of intelligently 
selected starting points.

Environmental economists have long rec-
ognized that epistasis can be important, both 
on the environmental benefits side (e.g., 
Khanna et al. 2003; Parkhurst and Shogren 
2007; Costello and Polasky 2004) and on 
the cost side, typically related to the actions 
of self-interested entities that can produce 
environmental benefits (e.g., firms or indi-
vidual land owners). Schroder, Lang, and 
Rabotyagov (2018) deal with epistasis on the 
cost side in the context of watershed optimi-
zation induced by landowners owning mul-
tiple restorable wetland locations. Clearly, 
approaches utilizing game theory, where one 
agent’s payoff is dependent on the actions of 
other agents, tackle epistasis directly (as pre-
sented by Fanokoa, Telahigue, and Zaccour 
2011; Bulte and Horan 2003). At the same 
time, in the nonpoint-source water pollution 
context, complexities of ecohydrology appear 
to be sometimes used as a justification against 
implementing incentive-based policies. Kling 
(2011) calls for practical policies, which can 
be both defensible with respect to biophysical 
understanding of watersheds and transparently 
provide trading incentives to landowners, and 
Rabotyagov et al. (2014) explore this idea fur-
ther and presented an empirical example (for 
a very skeptical look on perspectives of water 
quality trading, see Hoag et al. [2017]). Our 
current work recognizes complexities that are 
present on the biophysical side, yet we also 
find that, even when issues such as epistasis are 
present, reasonable simplifications can work 
well for a range of water quality improvement 
targets (and reasonable adjustments can be 
made to account for the main effects of epista-
sis). Simplifications, which linearize the prob-
lem and produce individual-level (as opposed 
to system-level) environmental benefits, can 
be useful for both optimization and trade-off 

analysis and continue to provide a basis and a 
rationale for a closer look at effective and ap-
proximately efficient incentive-based policies 
in nonpoint-source pollution problems.
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