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ABSTRACT This study estimates an econo-
metric Ricardian model of the effects of cli-
mate on forestry using a novel national data 
set of county-level net economic returns to 
forestland. Results show that climate change 
projections to 2050 will increase forest net re-
turns on the middle latitudes of eastern U.S. 
timberland. We quantify the value of extensive 
margin adaptation to climate change by sep-
arately estimating climate’s effect on 11 dis-
tinct forest types. We find that approximately 
69% of the positive climate change effect on 
eastern U.S. forestry arises from the value of 
extensive margin adaptation. Climate change 
impacts in the western United States are in-
conclusive. (JEL Q23, Q51)

1. Introduction

Climate change can generate multiple costs 
and benefits on society through its effects on 
forestland. By inducing range shifts in wild-
life habitat (Staudinger et al. 2013), a warming 
climate is widely expected to generate non-
market costs to biological diversity ( IPBES 
2019) that is especially high in forests (Pimm 
et al. 2014). Climate change can also generate 
social costs and benefits that operate through 
the market production of timber. Optimization 
studies of timber markets find that climate 
change can generate benefits to the global 
forestry sector by increasing tree growth pro-
ductivity (Sohngen and Mendelsohn 1998; 
Lee and Lyon 2004; Sohngen and Tian 2016), 
where adaptation by timber management is 

a key component of the expected benefits on 
the timber sector (Massetti and Mendelsohn 
2018). Because climate change can create an 
economic value of adaptation by altering the 
optimal choice of planted tree species (Guo 
and Costello 2013), the effect of a changing 
climate on timber market activity and man-
agement incentives can alter the flow and 
resulting nonmarket values associated with 
ecosystem services that change with for-
est composition (Hashida and Lewis 2019). 
Therefore, analyzing climate change effects 
on the market returns to forestry provide a 
foundation for understanding management 
incentives and the many costs and benefits 
that arise from effects on the market and the 
nonmarket ecosystem services that flow from 
forests. Importantly, there are no large-scale 
empirical economic assessments of climate 
change effects on the market returns to the 
forestry sector (Aufhammer 2018).

This article develops the first large-scale 
Ricardian econometric analysis that estimates 
the effects of climate on a measure of annual-
ized net economic returns to forestry across 
the coterminous United States. The Ricardian 
method has been developed and widely ap-
plied to estimate the effects of climate on agri-
cultural land values using cross-sectional data 
(e.g., Mendelsohn, Nordhaus, and Shaw 1994; 
Schlenker, Hanemann, and Fisher 2005). By 
empirically relating a region’s climate to the 
land values that arise from private land-use de-
cisions, the key advantage of Ricardian analy-
ses is that they implicitly account for privately 
optimal adaptation to climate. The foundation 
of our analysis is a novel  county-level data-
base of annualized net returns to forestry for 
the coterminous 48 states that we compiled 
and estimated from numerous data sources. 
Unlike U.S. agriculture, there is no readily 
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available national database of net economic 
returns to forestry.

We bring together three primary data 
products to develop the full database. First, 
we compile stumpage price data for numer-
ous tree species across dozens of public and 
private data sources across the country from 
1998 to 2014. Second, we incorporate recent 
county-level timber establishment cost esti-
mates developed by Nielsen, Plantinga, and 
Alig (2014). Finally, we develop and estimate 
highly localized timber growth equations by 
exploiting a large data set comprised of 32 
million individual tree observations from the 
U.S. Forest Service’s Forest Inventory and 
Analysis (FIA) data spanning the coterminous 
United States. Our database includes approx-
imately 42,500 separately estimated timber 
growth equations that generate timber yields, 
which vary by county, species group, and for-
est type group. Forest type groups are defined 
by the U.S. Forest Service and are combina-
tions of individual tree species groups that 
typically grow together. The fine-scale vari-
ation in estimated timber growth equations 
embed all localized climatic factors, such as 
direct productivity effects and landowners’ 
intensive margin adaptation decisions from 
managing particular tree species. A final aver-
age annualized net return to forestry measure 
is constructed for each county, where net re-
turns are weighted by each county’s observed 
share of timber volume in different forest type 
groups. Weighting by observed forest type 
shares in a county builds a net return to for-
estry measure that implicitly accounts for how 
landowners have adapted to their current cli-
mate through their observed choices of which 
tree species to plant.1

Our application of the Ricardian approach 
to forestry uses cross-sectional variation to es-
timate composite Ricardian functions for the 
1,624 eastern and 241 western U.S. counties 
that have private timberland and observable 
prices. The composite Ricardian functions in-
clude average measures of the county-level net 
returns to forestry as the dependent variable. 

1 E.g., the southern U.S. net return measures are heavily 
influenced by the large share of softwoods in the current for-
est base, and past research has shown that current southern 
softwood abundance has been driven by landowner plantings 
(Sohngen and Brown 2006).

We regress average county net returns to for-
estry on multiple downscaled climate vari-
ables as well as controls for soil quality on 
forestland and regional fixed effects. We pro-
vide explicit tests for interactions between 
temperature and precipitation variables, and 
we explore robustness to alternative speci-
fications of temperature and precipitation as 
annual or seasonal measures. The estimated 
composite Ricardian models are used to ex-
amine the effects of down-scaled climate 
change predictions on the spatial distribu-
tion of timberland values across eastern and 
western U.S. counties. Our results find robust 
positive and statistically significant effects 
of climate change on 71.4% of eastern forest 
timberland that lies roughly in the middle lat-
itudes of the eastern United States (approxi-
mately 325 million acres of land). Results 
are either insignificant or inconclusive as to 
whether climate change would raise or lower 
net returns to forestry in the northern, western, 
and far southern United States.

This study presents a large-scale empirical 
estimation of the effects of climate on net re-
turns to forestry using a national database. Prior 
economic studies that find beneficial climate 
change effects on forestry are derived with in-
tertemporal market optimization models based 
on calibrated tree growth productivity and die-
back from climate change, combined with a 
set of imposed assumptions regarding the de-
mand for timber (e.g., Sohngen and Mendel-
sohn 1998; Lee and Lyon 2004; Sohngen and 
Tian 2016; Favero, Mendelsohn, and Sohngen 
2018). The optimization is based on an as-
sumed time path of climate change and gen-
erates a dynamically consistent time path of 
optimal management adaptations to a chang-
ing climate. There is also a rich set of natural 
science studies that examine climate-induced 
shifts in the geographic range of tree species 
(e.g., Iverson et al. 2008), and empirical stud-
ies of forest productivity that find heteroge-
neous effects of climate change on the bio-
logical growth and productivity of alternative 
species of trees (Latta et al. 2010; Huang et al. 
2011; Rehfeldt et al. 2014; Restaino, Peterson, 
and Littell 2016). Finally, other studies have 
coupled biophysical simulations of tree spe-
cies range shifts with numerical calculations 
of land values, finding net costs from climate 
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change on the European forestry sector (Han-
ewinkel et al. 2013). In contrast to these prior 
studies, our empirical approach builds off cli-
mate econometrics methods that have been 
widely applied to sectors outside of forestry 
(e.g., Schlenker and Robert 2009; Hsiang, 
Burke, and Miguel 2013; Albouy et al. 2016; 
Hsiang 2016; Dundas and von Haefen 2020) 
and is differentiated from numerical economic 
optimization and simulation analyses of for-
estry by using statistical theory to test hypoth-
eses about the significance and heterogeneity 
of climate effects on forestry. Our approach 
is differentiated from natural science studies 
by quantifying climate effects on an economic 
measure of forestland values and accounting 
for adaptation.

We develop an approach to estimating 
the share of the composite Ricardian climate 
change effects that arise from extensive mar-
gin adaptation across different forest types. In 
addition to accounting for productivity effects 
of climate change on tree growth, climate 
change effects estimated from the composite 
Ricardian model implicitly account for adap-
tation by landowners under an assumption of 
costless extensive margin adaptation across 
alternative forest types (e.g., converting an 
oak-hickory forest to a loblolly pine forest). 
However, one cost of extensive margin adap-
tation in the forestry sector is forgoing future 
growth of existing stands with premature 
harvest, which implies that adaptation will 
be slowed by replanting decisions that occur 
once over multiple-decade harvest rotation 
cycles (Hashida and Lewis 2019). We explore 
the extent to which an assumption of costless 
extensive margin adaptations are likely driv-
ing the composite Ricardian model results by 
separately estimating Ricardian functions for 
the 11 major forest type groups in the east-
ern United States, and computing a climate 
change effect that assumes no extensive mar-
gin adaptation across forest types. By using 
observed growing stock data, each forest 
type–specific Ricardian function implicitly 
accounts for adaptation along the intensive 
margin (e.g., rotation length, site preparation, 
seeding strategies). By combining separately 
estimated Ricardian functions across forest 
types, we can examine whether the projected 
changes from the composite eastern Ricardian 

model could be explained by intensive mar-
gin changes in each forest type or whether 
extensive margin changes across forest types 
are needed to explain the composite model’s 
climate change effects. We find strong evi-
dence of significant adaptation value along 
the extensive margin, where approximately 
69% of the estimated positive and significant 
effects of climate change on net returns in the 
eastern United States arise from the value of 
adaptation on the extensive margin. Much of 
the value of adaptation likely arises from the 
potential of commercially valuable southern 
yellow pine species to move northward and 
westward through planting. Therefore, the in-
centives for extensive margin adaptations in 
forestry are high in the middle latitudes of the 
eastern United States.

Finally, our analysis contributes to broad 
inquiries into society’s many climate adapta-
tion possibilities. Whereas management deci-
sions and adaptation to climate in the timber 
industry are driven by landowners’ incentive 
to maximize private economic returns, such 
decisions have consequences for ecosystem 
services with public goods characteristics 
(Hashida et al. 2020). For example, the dis-
tribution of tree species directly affects the 
habitat suitability for numerous wildlife spe-
cies that are specialized to certain forest types 
(Wilcove et al. 1998), and our finding of in-
centives to increase plantations of southern 
pine species could have strong negative con-
sequences for biodiversity (Haskell, Evans, 
and Pelkey 2006). In addition, the aggregate 
stock of land devoted to timber and agriculture 
is affected by the relative net returns to both 
substitute land uses, which affects the pro-
vision of a number of nonmarket ecosystem 
services (Lubowski, Plantinga, and Stavins 
2006; Lawler et al. 2014). Understanding the 
linkages between forest management, climate 
change, and natural systems is vital for un-
derstanding the social costs of climate change 
and designing optimal land conservation pol-
icy in response to climate change (Lewis and 
Polasky 2018).

2. Theoretical Framework

We formalize the concept of adaptation in 
forestry and develop the intuition behind our 

by
 g

ue
st

 o
n 

A
pr

il 
17

, 2
02

4.
 C

op
yr

ig
ht

 2
02

1
D

ow
nl

oa
de

d 
fr

om
 



Land Economics914 November 2021

empirical strategy that uses a series of cross- 
sectional regressions of the net economic re-
turns to forestry on measures of climate and 
land quality. The U.S. Forest Service classi-
fies forests into forest type groups (F), where 
each group is composed of multiple species 
groups (s). For example, the loblolly/short-
leaf pine forest type group can include pine 
species from multiple species groups, such 
as loblolly, shortleaf, Virginia, and more. We 
adopt the U.S. Forest Service classification 
system for our analysis.

Net Returns to Forestry

Rotational forestry consists of periodic har-
vests with subsequent replanting. The land-
owner only earns profit at harvest, and the 
landowner’s value function can be written in 
dynamic programming form as follows (Guo 
and Costello 2013):
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where P(F,t) is the stumpage price of forest 
type F at time t, volF (a,Ct) is the forest type 
F timber volume of age a trees growing in 
climate conditions Ct, R is a replanting cost, 
and ρ is a discount factor. Because tree vol-
ume is a function of the weather outcomes 
that have occurred since the tree was planted, 
the climate variable Ct represents a long-term 
average of weather conditions that occurred 
in the years up to t. At each point in time t, 
the landowner chooses whether to harvest and 
earn a one-time profit of P(F,t)⋅volF (a,Ct)–R, 
with subsequent replanting optimized over the 
choice of which forest type Fj to plant. If the 
landowner chooses not to harvest, their trees 
grow by volF (a+1,Ct+1)–volF (a,Ct) over the 
next period. Indexing the climate conditions 
variable by t accounts for the fact that cli-
mate may change over time. Guo and Costello 
(2013) use numerical methods to show how 

climate change can be introduced into the for-
estry land value function in equation [1] when 
the timber volume functions for alternative 
tree species are a function of climate, so the 
landowners’ optimal replanting choice and 
harvest time depends on landowners’ expec-
tations of climate change.

Land values are commonly written as the 
present value of the future stream of annual-
ized net returns to land (rents) (e.g., Capozza 
and Helsely 1989). As such, we write the land 
value function for forestry as

0
( ) ( ),, , , ,t

t t t tt
V a F C NR a F Cρ∞

==∑  [2]

where ρ  is a discount factor and NRt(a,F,Ct) 
is the annualized net return to land in time t. 
The term NRt(a,F,Ct) is equivalent to the con-
cept of cash rents for crops, which is used in 
agricultural economics (e.g., Ortiz-Bobea 
2020). For land that is used for timber, current 
period (t = 0) annualized net returns to land 
NR0(a,F,C0) reflect prices and timber produc-
tivity of the land’s forest type from the current 
period only. In contrast, future annualized net 
returns to land NRt(a,F,Ct) for t > 0 depend on 
a set of expectations that the landowner has 
about future prices, climate change, and the 
effect that climate change might have on the 
timber yield functions for each forest type, 
volF (a,Ct). In addition, if the landowner ex-
pects to convert their land to another use in the 
future—such as urban development—then fu-
ture net returns could reflect factors that affect 
rents to other land uses. Because landowner 
expectations about the future are unknown to 
the researcher, we attempt to learn about the 
link between climate Ct and the value of for-
estland Vt by examining a measure of current 
period net returns to bare (a = 0) forest land:

0 0( , ; , ),NR g C x= β γ  [3]

where x represents a set of nonclimate vari-
ables (e.g., soils) affecting forest returns, g() 
is a function that relates climate and noncli-
mate variables to NR0, β is a parameter vector 
that links C0 to NR0, and γ is a parameter vec-
tor that links x to NR0. We build our empirical 
approach off estimating the function in equa-
tion [3] as a way to use observable informa-
tion—for example, current timber returns and 
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current climate—and recognize that we do not 
observe other information needed to estimate 
Vt(a,F,Ct) (e.g., landowner expectations about 
future climate change effects on forestry). Our 
premise is that estimating the functional link 
between current climate and current forest re-
turns, represented by β, provides useful infor-
mation on the link between future climate and 
forest returns. Thus, our approach is consis-
tent with the findings of Ortiz-Bobea’s (2020) 
agricultural Ricardian analysis, which found 
that basing estimation on current rental val-
ues rather than capitalized land values (asset 
prices) avoids biases from the presence of nu-
merous unobserved factors (like expectations) 
that affect land values but not rental values.

Ricardian Theory

Consider an alteration of the classic figure 
(Figure 1) of the agricultural Ricardian cli-
mate model from the seminal work of Men-
delsohn, Nordhaus, and Shaw (1994). The 
y-axis of Figure 1 includes a measure of 
current net returns (NR), and the x-axis is a 
climate variable such as temperature. Since 
NR is defined from the optimized land value 
function in equation [2], the curve labeled 
“Forest Type 1” presents net returns reflect-
ing the fact that small changes in climate will 
induce the landowner to make small decisions 
continuously to maximize the return to hav-
ing the land planted in Forest Type 1. We refer 
to these continuous management decisions as 
acting on the intensive margin. As indicated 

in equation [1], altering the rotation age is a 
prominent example of an intensive margin de-
cision in forest management. Other intensive 
margin actions in forestry include thinning 
out the parcel to encourage growth, spraying 
herbicides, or treating to reduce fire risk, all 
while continuing to keep the land planted in 
Forest Type 1.

In addition to small continuous adaptations, 
there is a set of discrete management choices 
that can be characterized by a threshold that 
defines the extensive margin. As denoted 
in the solution to equation [1], an important 
extensive margin choice in forestry is the 
decision to switch the type of trees growing 
from Forest Type 1 to Forest Type 2 in Figure 
1 (Guo and Costello 2013). For example, if 
climate in Figure 1 begins at C and changes 
to C’, then the landowner solving equation 
[1] switches their forest from Forest Type 1 
(with an optimal net return at point a) to For-
est Type 2 (with an optimal net return found at 
point b). If they had remained in Forest Type 1 
with new climate C’, then their net return 
would have been found at point c. The value 
of extensive margin adaptation in Figure 1 is 
the difference between the net returns at point 
b and the net returns at point c and is contin-
gent on the level of climate (Guo and Costello 
2013). A critical insight from Mendelsohn, 
Nordhaus, and Shaw (1994) was that regress-
ing cross-sectional observations of net returns 
to land on climate would implicitly capture all 
continuous and discrete adaptations landown-
ers have made to their current climate by trac-
ing a function akin to the upper envelope of 
net return curves in Figure 1. For example, the 
Ricardian model generates an estimate of β  
that captures the effect of the discrete change 
in climate from C to C’ in Figure 1 as the dif-
ference in net returns from point a to point b.

A cross-sectional regression of current for-
estry net returns (NR) on climate (C) can be 
used to estimate a variant of equation [3] and 
obtain parameter vectors β and γ:

,( )i i i iNR f C ε= + +xβ γ  [4]

where f(Ci) is a linear-in-parameters function 
of climate in county i, xi is a vector of non-
climatic independent variables such as soil 
quality, and iε  captures unobservable drivers 

Figure 1
Ricardian Value Function
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of NRi. Because most counties’ forestland 
base includes multiple types of forest spe-
cies, NRi is a weighted average of forest net 
returns across all forest types F and in county 
i: 

1
iF F F

i i iF
NR NR share== ⋅∑ , where F

ishare  
is the observed share of county’s forestland 
growing forest type F. Because F

ishare  cap-
tures all past forest management choices, it 
necessarily captures past extensive margin 
adaptations to the region’s climate and local 
timber market conditions. Therefore, estimat-
ing β from equation [4] captures both inten-
sive margin and extensive margin adaptations 
to climate.

Extensive margin adaptation in forestry 
may be sluggish and occur gradually. Our 
data indicates that forests are infrequently 
disturbed in a manner that would allow adap-
tation on the extensive margin. For example, 
the observed timber rotation time is approx-
imately 15 to 100 years across the United 
States and varies by region and forest type. 
In an empirically based simulation of exten-
sive margin adaptation along the U.S. West 
Coast, Hashida and Lewis (2019) find that the 
average probability of replanting an already- 
harvested plot as Douglas fir in Oregon goes 
from 50% under the current climate to only 
25% under the climate change expected by 
2090. However, due to the infrequent harvest 
rotation length (~50 years for Douglas fir) and 
gradually changing climate, the probability of 
observing a plot of Douglas fir at any age is 
a much higher 41% by 2090. Given the tem-
poral barriers to extensive margin adaptation 
in forestry, interpreting estimates of β as an 
estimate of the effects of climate on net re-
turns to forestry may arguably be too optimis-
tic. We approach this problem by estimating 
the effects of climate on net returns to forestry 
in a model where F

iNR  is measured as the net 
returns to forest type F:

i .( )F F F
i i iNR f C= + +F Fx β γ  [5]

By using cross-sectional variation in F
iNR  

across counties i for the same forest type F, 
estimates of Fβ  capture only intensive margin 
adaptations made in forest type F (e.g., rota-
tion age for F). Combining estimates of Fβ  for 
all F with the currently observed landscape 

shares in each forest type ( F
ishare ) provides 

a lower bound estimate of climate change 
effects on forestry under an assumption that 
landowners can adapt on the intensive margin 
but no extensive margin adaptation occurs. 
In contrast, estimating β from equation [4] 
provides an upper bound estimate of climate 
change effects on forestry that assumes land-
owners can freely undertake extensive margin 
adaptation with no constraints. For example, 
in Figure 1, Fβ  = c – a while β = b – a.

Our approach builds on insights from an 
existing literature estimating agricultural- 
climate Ricardian models throughout the 
world, which is reviewed by Mendelsohn and 
Massetti (2017). We assume that climate en-
ters the model exogenously. That is, climate 
is not correlated with some unobservable that 
directly drives the net returns to forestland. 
The agricultural-climate literature has identi-
fied irrigation infrastructure as a problematic 
omitted variable that has spurred numerous 
panel data applications that identify climate 
change effects from weather deviations (see 
the review by Blanc and Schlenker 2017). 
However, irrigation is not used for timberland. 
Further supporting the use of cross- sectional 
analysis is the long-term nature of timber 
management decisions. A key difference be-
tween agriculture and timber is the way tim-
ber managers respond to short-run fluctua-
tions in weather versus long-run fluctuations. 
Timber harvest decisions are made on much 
longer time horizons (15–100-year rotations) 
than those in agriculture. The panel solutions 
advanced in the agricultural-climate literature 
do not apply to a forestry model because the 
variation of year-to-year weather shocks on 
timber growth is averaged out by the broader 
climate over the multidecade period. Another 
potential omitted variable correlated with cli-
mate is development pressure (Albouy et al. 
2016), which would be capitalized in market 
prices for forestland. Rather than using land 
prices for timberland, we follow Ortiz-Bobea 
(2020) and use a “cash rent” concept that is 
affected by current use productivity rather 
than anticipated future development values. In 
particular, we construct net returns measures 
directly from stumpage price and estimated 
tree growth equations, and thus our measure 

by
 g

ue
st

 o
n 

A
pr

il 
17

, 2
02

4.
 C

op
yr

ig
ht

 2
02

1
D

ow
nl

oa
de

d 
fr

om
 



97(4) 917Mihiar and Lewis: Climate Change and U.S. Forestland

of forestland value is not affected by local de-
velopment pressures.

3. Constructing Net Returns to 
Forestry Measures

This analysis features a unique construction 
of current county-level annualized net eco-
nomic returns to forestland for the cotermi-
nous United States, which constitutes the 
primary dependent variable in the forestland 
Ricardian functions estimated below. Classi-
cal forest economics argues that forest land 
values depend on timber growth, stumpage 
price, replanting costs, a discount rate, and 
the rotation period with which harvest occurs 
(Faustmann 1849). Our aim is to construct a 
measure of the current annual profitability of 
U.S. timberland at the county level as devel-
oped in equation [3]. Our measure combines 
current stumpage prices, replanting costs, 
timber-yield functions (estimated from ob-
servable data on tree volume and correspond-
ing tree age from private land), and observed 
state-level timber removal ages for different 
forest types.

Stumpage Price and Replanting Cost Data

Analysis of forestry returns at the national 
level has been limited by the lack of a central-
ized data source for stumpage prices, P. We 
compile a unique national stumpage price data 
set for 1997–2014 from numerous sources 
including state-level departments of natural 
resources, university extension services, the 
U.S. Forest Service, and private reporting ser-
vices (see Appendix Table A1). All stumpage 
prices are georeferenced to the county level, 
and the reported species are mapped to spe-
cies groups defined by the U.S. Forest Service. 
Missing years for each county-species pair 
are interpolated linearly using the observed 
values. We approximate R from equation [1] 
with forest establishment costs estimated by 
Nielsen, Plantinga, and Alig (2014) for each 
county in the coterminous United States based 
on enrollment data from the USDA’s National 
Conservation Reserve Program.

Yield Functions for Tree Growth

Past natural science literature has shown 
examples of how climate affects the tree 
growth functions for selected species and re-
gions (e.g., Latta et al. 2010; Rehfeldt et al. 
2014). Given the substantial climate variabil-
ity across the United States, we require tree 
growth functions that differ across fine spa-
tial scales to capture fine-scale climate differ-
ences. Using data from FIA plots comprising 
nearly 32 million individual tree observations 
of growing stock volume along with the av-
erage stand age for the plot where each tree 
is located, we estimate approximately 42,500 
county-species specific timber growth equa-
tions at the species group level using a per-
mutation of von Bertalanffy’s function for or-
ganic growth (von Bertalanffy 1938):

3(1 ) ,( ) iss a
isiv eaol −= − βα  [6]

where ( )s
ivol a  is the growing stock volume in 

cubic feet of an individual tree in county i be-
longing to forest species group s at average 
stand age a. We estimate isα  and isβ  using non-
linear least squares with the Broyden- Fletcher-
Goldfarb-Shanno (BFGS) quasi-Newton 
computational method to minimize the sum 
of squared deviations of equation [6].2 Equa-
tion [6] is estimated using the average stand 
age in years for the plot where individual trees 
are located. Von Bertalanffy growth functions 
have been used extensively in natural resource 
sciences and apply generally to any organic 
life. For example, Van Deusen and Heath 
(2010) use von Bertalanffy functions to esti-
mate growth for measuring carbon character-
istics on U.S. forestland. Since equation [6] is 
estimated from observed data in recent years, 

( )s
ivol a  implicitly embeds the current climate 

at location i. Appendix Figure A1 illustrates 
how two estimated von Bertalanffy growth 
functions for Douglas fir in two distinct Ore-
gon counties embed differences in tempera-
ture and precipitation. Our estimated timber 
growth data covers 47 forest species groups 

2 We estimate equation [6] only if (1) we have at least 30 
observations of s in i, (2) the function converges, and (3) 
the estimated βis ≤ 0.25 for a reasonable growth path. If any 
of these criteria fail, we use estimates of equation [6] at the 
state level rather than the county level.
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that combine to form 109 different forest type 
groups. When averaged across all county- 
species equations across the United States, we 
obtained estimated values for α  and β of 28.76 
and 0.0498, respectively.

An Annualized Net Returns to Forestry 
Measure for One Rotation

With an available price Pis, a per acre replant-
ing cost Ri, and estimated volume functions 

( )s
ivol a  for each county (i)–species (s) pair, 

we require a timber removal age (i.e., rotation 
length) to determine a one-rotation forestry 
profit. We focus on one rotation to get a good 
measure of current profitability of timberland, 
and we use empirical removal ages derived 
from FIA plots that recorded timber harvest-
ing activities. In particular, we use the state 
average stand age of all recent timber remov-
als recorded in the FIA’s condition table by 
species group s to proxy for rotation length 
Tis, and then calculate the present value of a 
one-rotation profit from harvesting ( )s

isivol T  
in Tis years:

,[ ) ]( iss T
is is is i isiP vol T TA R PVProfitρ⋅ ⋅ − =  [7]

where isP  is the average stumpage price for 
forest species group s in county i over the pe-
riod 1998–2014, ( )s

isivol T  is the estimated von 
Bertalanffy volume of timber for an individ-
ual tree of species s evaluated at age a = Tis, 
TAis measures trees per acre of species group 
s in county i, and Ri and ρ are replanting cost 
and discount factors as defined previously. 
Our measure of annualized net returns per 
acre is the annual payment s

iNR , in which a 
landowner would be indifferent to receiving 
PVProfitis today or a series of annual pay-
ments s

iNR  for Tis years:

1
.isTs t

isi t
NR PVProfitρ= =∑  [8]

The final step is to translate per acre net re-
turns for each species group to a forest type 
(F) average for the county and to a compos-
ite average for each county’s total forestland 
base. We construct county average net returns 
through two species group-weighted aver-
ages:

1
iS s s

i i is
NR NR share== ⋅∑  [9]

,1
,iSF s s

i i i Fs
NR NR share== ⋅∑  [10]

where NRi is the composite average net return 
to forestry for county i, s

ishare  is the share of 
county i’s growing stock volume of timber in 
forest species s, and Si is the total number of 
observed species groups in county i. In equa-
tion [10], we construct a measure of net re-
turns for each forest type group F in county 
i, which is a weighted average where ,

s
i Fshare  

represents the volume share of county i’s land 
in forest type F that is composed of species 
group s. Our approach differs from Lubowski, 
Plantinga, and Stavins’s (2006) construction 
of a similar measure of NRi in that (1) our vol-
ume functions were disaggregated by county 
i and forest types F, as opposed to aggregated 
functions over broad regions; and (2) we use 
observed state-average removal ages Tis rather 
than solving a Faustmann formula. Our final 
measure of NRi is comparable across counties 
and interpreted as the current average annual 
net return to forestry for an acre of bare for-
estland as defined in equation [3]. Table  1 
presents descriptive measures of the mean of 
the composite and forest-type-specific net re-
turns. The standard deviation of annual pre-
cipitation in the western United States is more 
than double the standard deviation in the east. 
Furthermore, eastern U.S. annual precipita-
tion ranges from 450 mm to 1,900 mm, while 
annual precipitation in the west has a much 
bigger range, from 298 mm to 3,114 mm.

We contend that the measure of NRi in 
equation [9] reflects current period net returns 
to forestry as developed in equation [3] and is 
not influenced by unknown future expectations 
of climate change. Equation [9] assumes that 
landowners have chosen forest types on their 
land (reflected in s

ishare ) to adapt to the cur-
rent climate rather than future climate change 
projections. However, if forest landowners are 
forward-looking and anticipate future climate 
change forecasts, they may already be grow-
ing forest types that would perform better un-
der future climates than the current climate, 
which means that regressing NRi on current 
climate would be biased (Severen, Costello, 
and Deschenes 2018). If the observed county 
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forest type shares are influenced by climate 
change forecasts, there should be evidence of 
significant recent switching of forest types by 
landowners.

To examine whether there has been recent 
switching of forest types, we compute the 
percentage of FIA plots where the landowner 
has switched the growing forest type between 
loblolly pine and some other forest type in the 
eastern United States, and between Douglas 
fir and some other forest type in the western 
United States. We focus on loblolly pine and 
Douglas fir because those are the two most 
common forest types planted using what the 
U.S. Forest Service calls “artificial regener-
ation.” If there has already been significant 
climate change adaptation involving switch-
ing forest types, it would most likely occur 
in these heavily managed species. Using re-
peated measurements of the same FIA plots 
after 2001, we find that of the 44,154 loblolly 
pine plots that were most recently measured in 
the eastern United States, only 262 (82) tran-
sitioned into (out of) loblolly pine from (to) 
another forest type through artificial regener-
ation. In the western United States, we find 
that of the 11,088 Douglas fir plots on private 
land that were most recently measured, only 
8 (52) transitioned into (out of) Douglas fir 
from (to) another forest type through artificial 
regeneration. Because well under 1% of the 
current stock of the most commonly planted 
trees have recently transitioned between other 
forest types through planting, we find little 
evidence that the current landscape is largely 
affected by landowners preemptively altering 
their forests in anticipation of future climate 
change. Thus, regressing NRi on current cli-
mate measures while omitting climate fore-
casts is appropriate.

Climate Data
Measures of historically observed temperature 
and precipitation were obtained from Ore gon 
State University’s PRISM downscaled climate 
data (Daly 2006) at an 800 m spatial resolu-
tion. Because we are interested in the effect of 
climate on forestland value, we use the long-
term average (“normal”) of each location’s 
weather variable to represent a location’s cli-
mate. Climate is defined as the average annual 
temperature and precipitation for the period 

1981–2010 measured in degrees Celsius and 
millimeters (mm), respectively.

Predictions of future climate at 4 km spatial 
resolution are obtained from the University of 
Idaho, MACA Statistically Downscaled Cli-
mate Data for CMIP5 (Abatzoglou 2013). The 
results and analysis below are based on pre-
dictions from the ensemble mean of 20 global 
climate models under emissions scenario RCP 
8.5. Average change in temperature and pre-
cipitation is defined as the difference between 
the baseline period (1975–2005) and the future 
period (2020–2050). Following Burke et al.’s 
(2015) suggestion to incorporate uncertainty 
in climate change model predictions, we esti-
mate changes in U.S. forestland returns across 
20 alternative global circulation models under 
RCP 8.5. We present climate change effect 
results across all available GCMs (Appendix 
Figure A3), and show that although the effect 
distributions vary, the overall result is robust 
to choice of GCM. Therefore, we settle on the 
ensemble mean climate change for our main 
analysis.

We derive county-level climate on forest-
land by using the forest-weighted average of 
grid observations within a county. Timberland 
area weights are recovered from spatially ex-
plicit forest cover found in the FIA database 
(Nelson and Vissage 2007). Climate observa-
tions that occur outside of the observed forest 
cover are dropped, and the remaining obser-
vations (those in forested areas) are averaged 
in a county. All climate data are processed 
initially at the monthly scale allowing con-
struction of annual and seasonal climate mea-
sures. We define four seasons (winter, spring, 
summer, and fall) where each is composed of 
the mean (sum) over the relevant three-month 
period for temperature (precipitation).

4. Econometric Specifications: 
Composite and Forest-Type 
Models

Western U.S. forests generally occur at higher 
elevations and in a drier climate (especially 
in the growing season) than eastern U.S. 
forests, which has led to minimal overlap in 
current forest types across the eastern and 
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western United States. Therefore, we estimate 
a composite Ricardian model for the eastern 
United States and a separate one for the west-
ern United States.3 This approach intention-
ally precludes adapting to climate change in 
the western United States by planting east-
ern U.S. forest types (e.g., loblolly pine). We 
also estimate a single nationally estimated 
Ricardian for interested readers (see Appen-
dix Table A2), although we find the separate 
eastern and western models more reasonable 
for assessing climate effects. The compos-
ite Ricardian models are defined by using 
the county average net returns to forestry for 
county i, NRi, as the dependent variable. The 
econometric function is

Composite Ricardian Function: 
( ) ,,i i i i r iNR f Temp PPT soilα ε= + + + +β γ δ   [11]

where f(Tempi,PPTi) is a polynomial func-
tion of 30-year averages of mean annual 
temperature and precipitation measures, soili 
is the county share of forestland in land ca-
pability class 1–4 (i.e., the best soil quality), 
δr is a vector of regional fixed effects, and 

iε  is the model unobservable. The function 
 f(Tempi,PPTi) also includes interactions be-
tween Tempi and PPTi. We estimate parame-
ters β, γ, δr, and α  using ordinary least squares  
with standard errors clustered by ecoregion. 
Clustering by ecoregions allows for arbitrary 
forms of  heteroskedasticity and spatial cor-
relation across counties but within each ecore-
gion. We use a series of F-tests to test for the 
preferred order for the polynomial function 
f().We also assess robustness to alternative cli-
mate measures by substituting seasonal means 
of temperature and precipitation in place of 
Tempi and PPTi.

Our identifying assumption is that our cli-
mate and soil variables are exogenous. One 
identification critique concerns our use of 
state average removal age in computing the 
dependent variable. If there is significant with-
in-state variation in removal age correlated 
with climate, this could create some bias in 

3 The east is defined using U.S. Forest Service subregions 
Northeast, North Central, Southeast, and South Central. The 
west is defined using U.S. Forest Service subregions Rocky 
Mountain North and South and Pacific Coast North and 
South.

estimating β that arises from measurement er-
ror. Although our use of forest type–specific 
removal age helps mitigate this measurement 
error to some extent, we cannot completely 
rule it out. The composite Ricardian func-
tion is used to generate the following climate 
change effect:

Composite Climate Change Impact = 

( , ,ˆ ˆ) ( , )C C
i i ii iNR f Temp PPT f Temp PPT∆ = −β β   [12]

where C
iTemp  and C

iPPT  represent projected 
climate changes in Tempi and PPTi, and β̂ in-
dicates the estimated parameter vector. The 
composite climate change effect reflects in-
tensive margin adaptation (e.g., changes in ro-
tation length) and extensive margin adaptation 
(e.g., changes in the forest types replanted).

We also estimate separate forest-type Ri-
cardian functions for the 11 major forest type 
groups in the eastern United States. A forest 
type is a mix of individual tree species, such 
as loblolly-shortleaf pine in the southeast or 
spruce-fir in the northeast. The forest-type 
Ricardian functions use the county average 
net returns to forest type F for county i, F

iNR
as the dependent variable. The econometric 
function is

Forest-Type Ricardian Function: 

,

,( )F s F
i ii

F F
r i

NR f Temp PPTα

ε

= + +

+ +

β γ

δ

F F
isoil

 [13]

where f F(Tempi,PPTi) is specific to forest type 
F, thereby allowing us to separately test for 
the appropriate polynomial order for each for-
est type. We use data specific to each forest 
type F to separately estimate parameters Fβ ,  
γF, F

rδ , and Fα . The forest type Ricardian 
functions are used to generate the following 
climate change effect for each forest type F:

Forest-Type F Climate Change Impact = 
,ˆ ˆ( ) ),(,F C C F

i ii if Temp PPT f Temp PPT−β βF F   [14]

where C
iTemp  and C

iPPT  represent climate 
changes as defined above. As discussed in 
Section 2, the forest type climate change ef-
fect reflects intensive margin adaptation in 
each forest type (e.g., changes in rotation 
length), but no extensive margin adaptation 
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across forest types. We use the estimated for-
est type climate change effect to generate an 
intensive-margin-only climate change effect 
as follows:

Intensive-Margin-Only Climate Change Impact = 

1
[ ,

, ].

ˆ ( )

ˆ ( )

iFT F F C C
i i iF

F
i i

share f Temp PPT

f Temp PPT

= −∑ β

β

F

F   [15]

The intensive-margin-only climate change ef-
fect holds the composition of each county’s 
forest fixed at current levels, where F

ishare  is 
defined as the currently observed share of the 
county’s forestland in forest-type F. Thus, the 
climate change impact in equation [15] differs 
from the climate change impact in equation 
[12] in that extensive margin adaptation across 
forest types is implicit in equation [12] but 
not in equation [15]. Since landowners would 
adapt to climate change on the extensive mar-
gin only if it would raise the value of their 
land, then the composite climate change effect 
serves as an upper bound climate change ef-
fect, while the intensive-margin-only climate 
change effect serves as a lower bound climate 
change effect.

We omit explicitly modeling net returns 
as a function of drought or fire risk indices 
because of what Angrist and Pischke (2009) 
call a bad control problem. Including a vari-
able such as fire risk is challenging because 
it is a direct function of climatic measures 
like precipitation. There is no ceteris paribus 
nature to a regression function that includes 
both climate and fire risk as separate vari-
ables. However, fire risk is implicitly captured 
in the forest Ricardian function through the 
observed effect of fire occurrence on average 
timber growth that we use in constructing the 
dependent variable.

5. Results

Composite Forest Ricardian Functions for 
the Eastern and Western United States

Figure 2 shows the spatial distribution of 
the dependent variable NRi and plots its val-
ues against Tempi and PPTi. This descriptive 
data indicate that the function f() is likely to 

be nonlinear for both the eastern and western 
United States. We test alternative polynomial 
functions of f() through a series of F-tests and 
by comparing adjusted R-squared across al-
ternative polynomial functions. Results indi-
cate that a fourth-order polynomial for Tempi 
and PPTi is preferred for the eastern United 
States, while a second-order polynomial for 
Tempi and PPTi is preferred for the western 
United States.

Parameter estimates from equation [11] are 
presented in Appendix Table A2. Parameters 
are estimated by ordinary least squares with 
regression functions weighted by timberland 
area in each county. Given the nonlinear poly-
nomial functions estimated in Appendix Ta-
ble A2, we examine the more intuitive average 
marginal effect (AME) of Tempi and PPTi in 
the first two columns of Table 2. The AMEs 
of Tempi and PPTi are significantly different 
from zero (5% level) for the western model, 
whereas only the AME of Tempi is significant 
for the eastern model. The AME for Tempi is 
larger in the east than in the western United 
States, while the AME for PPTi is much larger 
(and positive) in the drier western United 
States.

Figure 3 unpacks the shape of the esti-
mated nonlinear marginal effect (ME) across 
the range of the data. For the eastern United 
States, the ME of Tempi is positive and statis-
tically significant (5% level) for average tem-
peratures between 7°C and 19°C, but turns 
sharply negative above 21°C. The ME of PPTi 
in the east is never statistically significant (5% 
level). For the western United States, the ME 
of Tempi is positive at all temperature levels 
but not significant (5% level), while the ME 
of PPTi is positive and significantly different 
from zero (5% level) only in the moderate 
range of current precipitation levels between 
760 mm/yr and 1,470 mm/yr.4 A final way to 
examine the composite model is to pre sent 
contour plots of the estimated eastern and 
western U.S. composite Ricardian models, 
which indicates that the eastern U.S. Ricard-
ian function is highly nonlinear with a clear 
optimal range of Tempi and PPTi that happens 

4 Approximately one-quarter of western counties are in 
the range where the ME of precipitation is statistically sig-
nificant.
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to lie over the current climate of the prime 
loblolly pine–growing region of the south-
eastern United States (Appendix Figure A2a).

Climate change effects using the com-
posite Ricardian models are calculated using 
equation [12], where all climate variables 
are shifted to their projected 2050 levels.5 
We used the Krinsky-Robb method for cal-
culating 95% confidence intervals of the cli-
mate change impact for each county.6 Given 

5 Although some counties were not included in estimation 
because of missing price data, we include all counties with 
forestland in the climate effects analysis given the more 
complete coverage of climate data.

6 The Krinsky-Robb method simulates a parameter vector 
as ˆ

s kC xβ ′= +β , where β̂ is the estimated parameter vector 

our findings about the nonlinear shape of our 
marginal effect functions, we separate results 
into counties where there are statistically sig-
nificant climate change effects (5% level) and 
counties where there are not statistically sig-
nificant effects. Table 3 presents mean effects 
by region from the eastern and western U.S. 
composite models. For the East, about 71% of 
the private timberland acreage is projected to 
see a statistically significant average increase 
in net returns to forestry of approximately 

from the econometric model, C is the K × K  Cholesky 
decomposition of the estimated econometric variance- 
covariance matrix, and xk is a K-dimensional vector of 
draws from a standard normal distribution.

Figure 2
Spatial and Numerical Distribution of Composite Net Return to Forestry
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$9.17/acre, and about 11% of acreage is pro-
jected to see a statistically significant decrease 
in net returns to forestry of approximately 
$7.33/acre. The climate change effects for 
the remaining acreage is not statistically sig-
nificant. The acreage weighted average of the 
positive, negative, and zero climate change ef-
fects is an approximately $5.64/acre increase. 
The land with the positive effects corresponds 
with where the ME of temperature is positive 
and significant (mean temperature from 7°C 
to 19°C), which mostly occurs in the middle 
latitudes of the eastern United States. The 
land with the negative effects corresponds to 
where the ME of temperature is negative and 
significant (mean temperature above 21°C). 
For the western United States, the composite 
Ricardian using annual climate measures pro-
jects statistically significant positive increases 
in net returns to forestry on about 12% of the 
timberland, with the rest being insignificant.

To examine robustness of climate change 
effects, we reestimate equation [11] using 
seasonal climate measures of Tempi and PPTi 
(e.g., summer temp, fall temp) rather than 

annual measures. Parameter estimates from 
the seasonal composite Ricardian models are 
presented in Appendix Table A3, while esti-
mated climate change effects for the eastern 
U.S. seasonal model is presented in Table 3. 
Notably, the adjusted R-squared measures in-
dicate that the seasonal representation of cli-
mate fits much better than annual climate mea-
sures for the western United States but only 
slightly better for the eastern United States. 
The seasonal composite model generates pos-
itive and statistically significant (5% level) 
climate change effects for about 78% of east-
ern U.S. timberland, with the remainder being 
insignificant. Thus, the finding that the mid-
dle latitudes of the eastern United States will 
see positive climate change effects is strongly 
robust across specifications using alternative 
climate specifications, while the negative cli-
mate change effects for the far southern United 
States from the annual climate specification is 
not robust when using a seasonal model for 
climate change effects. The climate change 
effects for the west are never significantly dif-
ferent from zero for the composite Ricardian 

Figure 3
Estimated Marginal Effect of Average Annual Temperature and Total Annual Precipitation
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model that specifies seasonal climate mea-
sures, and we have little confidence that west-
ern forests will experience significant changes 
in net returns to forestry (5% level). We also 
find that our climate change effects are robust 
to including a broader set of soil quality con-
trols, mean ele vation on timberland, variables 
representing nearby timber mill capacity, and 
latitude; see Appendix Tables A5 and A6. Cli-
mate effects from the national model are also 
presented in Appendix Table A5 to show that 
our preferred strategy of separately estimating 
eastern and western Ricardian functions is 
robust to pooled estimation of a full national 
model.

Altogether, our results from the composite 
Ricardian estimations indicate strong robust-
ness in the finding that climate change will 
have a positive average effect on the net re-
turns to forestry in the middle latitudes of the 
eastern United States (current mean tempera-
ture between approximately 7°C and 19°C), 
though the magnitude is sensitive to whether 
climate is represented as a seasonal or annual 
measure. In contrast, our finding of positive 
climate change effects for the western United 
States is not robust when using annual climate 
measures compared with seasonal measures. 
A major limitation when doing this analysis in 
the western United States is that there are only 
32 million acres of private timberland com-
pared with 455 million acres of private tim-
berland in the eastern United States, and these 
acres are distributed over far fewer counties, 
which define our unit of observation for es-
timation.

Forest-Type Ricardian Functions for the 
Eastern United States

As detailed in Section 4, the composite Ri-
cardian climate effects assume full adaptation 
along the intensive and extensive margins. We 
evaluate the importance of extensive margin 
adaptation in the climate change effects by es-
timating separate forest type Ricardian func-
tions to get a lower bound climate change ef-
fect estimate that assumes no adaptation on the 
extensive margin. Estimating separate Ricard-
ian functions for each forest type in equation 
[13] requires data from the geographic range 
where each forest type is currently growing. 
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Given the restricted geographical ranges for 
the forest type Ricardian functions, we opt for 
the simpler climate specifications of using an-
nual measures of Tempi and PPTi for the east-
ern United States only. The lack of robustness 
and poor fit from the annual climate measures 
in the western U.S. composite model leads us 
to lack confidence in accurately representing 
western U.S. forestry with simple annual cli-
mate measures.

Parameter estimates for each of 11 eastern 
forest type Ricardian models are presented 
in Appendix Table A4, while estimated aver-
age marginal effects (AMEs) for each model 
are presented in Table 2. The forest type that 
covers the largest acreage is oak-hickory, and 
the smallest is eastern red cedar. The most 
profitable forest type is loblolly-slash pine 
(Table  1), which is the most commercially 
valuable of the southern yellow pine species. 
As in the composite model, we use adjusted 
R-squared to evaluate alternative polynomial 
functions to specify f F (Tempi,PPTi) in equa-
tion [13], where the chosen polynomial order 
is presented in the seventh column of Table 2. 
The AME of Tempi (PPTi) is positive for 9 
(5) of the 11 eastern forest types. Ten of the 
AMEs of Tempi are significantly different 
from zero, and six of the AMEs of PPTi are 
significant (5% level).

Appendix Figure A2c presents contour 
plots for the estimated Ricardian function 
for loblolly-shortleaf pine, the most valuable 
forest type in the eastern United States. The 
contour plots indicate a clear range of tem-
perature and precipitation that maximizes the 
net returns to this forest type, which occurs in 
the area where loblolly-shortleaf is currently 
most abundant. Appendix Figure A2c indi-
cates that warming temperatures would gen-
erate a sharp increase in net returns to loblolly 
in areas that are currently below 16°C, and a 
sharp decrease in net returns in areas that are 
currently above 19°C. It should be noted that 
the value of Tempi that maximizes net returns 
to loblolly-shortleaf is almost the same as the 
value of Tempi that maximizes the composite 
Ricardian function, highlighting the impor-
tance of the loblolly-shortleaf forest type in 
the composite Ricardian.

Climate change effects for each forest 
type (equation [14]) are separately presented 

in Table 2 and account for intensive margin 
adap tation in each forest type. By holding the 
amount and location of each forest type fixed, 
the forest type climate change effects do not 
account for extensive margin adaptation. Six 
of 11 forest types are projected to see positive 
and significant climate change effects on their 
respective net returns by 2050, while the cli-
mate change effects for the remaining five are 
not significantly different from zero.

Value of Extensive Margin Adaptation

The forest type Ricardian functions can be 
combined to determine landscape level im-
pacts assuming that the composition of the 
forest remains fixed, which we refer to as 
 intensive-margin-only climate change effects 
(equation [15]). The difference between the 
composite Ricardian climate change effect 
and the intensive-margin-only climate change 
effect is the value of adaptation on the exten-
sive margin, presented in Table 3. Using the 
95% confidence interval of climate change 
effects from the composite Ricardian, we 
test whether the effects from the composite 
model are equal to the intensive-margin-only 
climate change effect. Given the robustness 
checks, we focus on the effects with the most 
confidence—the eastern timberland with a 
significant and positive climate change effect 
in the annual climate model. Table 3 shows 
value of extensive margin adaptation esti-
mates for counties where those estimates are 
significantly different from zero (5% level). 
Results indicate that about 67.6% of east-
ern timberland has a positive value of adap-
tation on the extensive margin. The average 
value of adaptation on the extensive margin 
is $6.34/acre, which is 69% of the composite 
Ricardian’s positive climate change effect of 
$9.17/acre. Thus, a sizable proportion of the 
estimated positive Ricardian climate change 
effect comes from adaptation on the exten-
sive margin. Figure 4 presents a map of the 
estimated value of adaptation on the exten-
sive margin that is significantly greater than 
zero (5% level). Notably, the portion of the 
United States with positive value of exten-
sive margin adaptation lies just to the north 
of the prime southern timberlands composed 
of the commercially valuable yellow pine 
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species, particularly loblolly pine. Thus, one 
interpretation of Figure 4 is that it depicts an 
area where forest landowners will likely have 
an economic incentive to plant yellow pine 
species as an adaptation strategy to climate 
change. Extensive planting of pine species 
in the recent past shows that planting is one 
mechanism through which landowners can 
alter a forested landscape from hardwoods to 
pine (Sohngen and Brown 2006). The speed 
of such planting in response to climate change 
is an open question that is not addressed here.

6. Discussion

We estimate large-scale Ricardian functions 
of the link between the net economic returns 
to forestry and current climate, and we use 
the estimated functions to quantify the effect 
of climate change on the economic returns to 
forestry for the United States. Using alterna-
tive climate specifications, results are robust 
in indicating that climate change will increase 
forestry returns in the middle latitudes of the 
eastern United States in areas with current 
average temperatures between approximately 
7°C and 19°C. Approximately 71% of eastern 
U.S. timberland is projected to see positive 
effects of climate change on the net returns 
to timber production. Estimation results for 
the northern, western, and far southeastern 
United States are inconclusive and either not 
significantly different from zero or not robust 
to alternative representations of climate. It 

is likely that assessing climate effects in the 
western states requires a finer-scale than the 
county, as western counties tend to be large 
with significant within-county climate vari-
ation. Extending prior plot-level analyses of 
western forest management under climate 
change (Hashida and Lewis 2019) to evaluate 
welfare is a method that could better capture 
within-county data variation. For the portion 
of the eastern United States that is projected 
to experience positive and statistically signif-
icant climate change effects on net returns to 
forestry, we find that approximately 69% of 
the projected gains arise from value of climate 
change adaptation on the extensive margin. 
The extensive margin comprises the margin 
where different types of forests are replanted 
or regenerated following harvest.

Our article offers three primary contribu-
tions. First, by providing the first empirically 
estimated link between current climate and 
forestry returns, we fill an important gap in 
the economics literature that uses empiri-
cal analysis to quantify costs and benefits of 
climate change on various economic sectors. 
Our finding of robust, positive, and statisti-
cally significant climate change effects in the 
middle portion of the eastern United States is 
broadly consistent with past literature that uses 
numerical assessments to examine climate 
change impacts in forestry (Sohngen 2020). 
However, we also find strong heterogeneity in 
climate change effects that is consistent with 
analyses of physical productivity measures 
(e.g., Latta et al. 2010), with clear positive ef-
fects only in moderate current climates of the 
middle latitudes of the eastern United States. 
Our ability to test hypotheses and calculate 
statistical significance regarding the effects 
of climate change on forestry returns across 
space differentiates this analysis from prior 
numerical studies of climate change and the 
forestry sector. Second, we develop a method 
that allows us to disentangle the value of ex-
tensive margin adaptation across forest types 
from our estimate of climate change effects 
by estimating separate Ricardian functions 
across individual forest type groups (e.g., 
 maple-beech-birch,  loblolly-shortleaf pine) in 
the eastern United States. By combining our 
forest type Ricardian functions with the cur-
rent share of the landscape in each forest type, 

Figure 4
Adaptation Value Mapped over Confidence Region
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we construct lower bound climate change ef-
fects on forestry that assume no adaptation 
on the extensive margin. Third, by quantify-
ing the value of extensive margin adaptation 
differentially across regions, we show that the 
incentive to adapt by switching forest types is 
strongest in the middle latitudes of the east-
ern United States. It is likely that much of 
the value of extensive margin climate change 
adaptation arises from converting hardwoods 
to commercially valuable pine species that 
would become more productive under a 
warming climate in the middle latitudes of the 
eastern United States. Because different for-
est types provide varying levels of nontimber 
ecosystem services, and planted pine forests 
have been shown to have lower biodiversity 
than natural hardwoods (Haskell, Evans, and 
Pelkey 2006), our results suggest that regions 
where land-use changes in forestry (and cor-
responding ecosystem services) are likely to 
be largest as a result of climate change adap-
tation.

The role of extensive margin adaptations 
in forestry is an important consideration 
when examining our composite results. The 
composite Ricardian model assumes no con-
straints or hysteresis in adaptation, whereas 
there are reasons to think that extensive mar-
gin adaptations in forestry may happen slug-
gishly. Because forest landowners do not 
make harvest and replanting choices annu-
ally but once over several decades, extensive 
margin adaptation can involve significant op-
portunity costs of forgoing future growth of 
existing stands, and it can take time to rad-
ically convert a forested landscape from one 
dominant tree species to another (Hashida and 
Lewis 2019). Therefore, we suggest that our 
composite Ricardian results be treated as an 
upper bound on the potential gains to U.S. 
forestry under climate change because the 
framework assumes that the full set of opti-
mal adaptation can and will happen by 2050. 
Our results also suggest many new research 
questions. How quickly can extensive margin 
adaptation in forestry occur, and what barriers 
exist? How do current landowners anticipate 
future climate change and respond? Guo and 
Costello’s (2013) numerical analysis of ex-
tensive margin adaptation in forestry assumes 
that landowners anticipate future climate and 

preemptively adjust the types of trees they 
grow. However, a study of family foresters 
in the northwestern United States found little 
evidence that landowners are making manage-
ment decisions in response to climate change 
forecasts (Grotta et al. 2013). Using repeated 
plot-level data from the FIA database, we cal-
culate minimal recently observed switching of 
forest types since 2001 that involve the most 
commonly planted species of loblolly pine 
and Douglas fir.

Our projected increases to forestry returns 
from climate change also raise questions 
about extensive margin adaptations across ag-
ricultural and forest land uses. For example, 
the eastern United States has long experienced 
an active margin between agriculture and for-
estry, and past research has shown that in-
creases in net returns to forestry will increase 
land-use changes from agriculture to forestry 
(e.g., Lubowski, Plantinga, and Stavins 2008). 
Furthermore, in a Ricardian analysis of agri-
culture in the eastern United States, Schlenker, 
Hanemann, and Fisher (2006) found that cli-
mate change can result in reductions in agri-
cultural returns by 2050. Since agriculture and 
forestry are substitute land uses in the eastern 
United States, climate changes that are more 
favorable to forestry than agriculture suggest 
potential afforestation, and prior studies have 
shown that afforestation from agriculture to 
forestry can have potentially large effects on 
many nonmarket ecosystem services, from 
carbon sequestration to wildlife habitat (Law-
ler et al. 2014). Optimal conservation policy 
under climate change compares the dynamics 
of benefits and costs over time, where benefits 
and costs of conservation may change in re-
sponse to climate (Lewis and Polasky 2018). 
By showing how climate change can influence 
private returns to U.S. forestry, the Ricardian 
model in this study provides a foundation to 
explore numerous questions regarding the in-
teraction between climate change, land use, 
ecosystem services, and conservation policy.
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