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Abstract 
 

Many cities provide incentives for private landowners to install green stormwater 
infrastructure (GSI) to reduce stormwater runoff and deliver co-benefits of urban 
greening. We analyze how participation in a GSI subsidy program affects the spatial 
distribution of urban greening. The distributional effects manifest in two stages: 
program eligibility and participation decisions. Eligibility, determined by hydrological 
factors, is positively correlated with wealthier and whiter areas. Within eligible areas, 
the wealthiest households and least white neighborhoods have lower participation 
rates. The findings highlight the importance of considering eligibility and 
participation in balancing the joint goals of environmental quality and environmental 
justice. 

 
Key Words: green stormwater infrastructure, distributional effects, policy analysis, 
environmental justice 
JEL Codes: Q25, Q52, Q53, L95 
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1 Introduction 
 
Voluntary environmental policies, such as subsidies or rebates for environmentally friendly 

products, often generate both public and private benefits. For example, installing an energy 

efficient appliance will contribute to public goods of reduced greenhouse gases and local  

air pollution while simultaneously saving the owner money on their utility bills. The type  

of households or firms that participate in voluntary environmental programs, along with 

their funding sources, will determine the distributional consequences of those programs.  

These policies may enhance or hinder environmental justice objectives by diverting resources to 

specific groups. We investigate the distributional consequences of voluntary environmental 

policies in subsidies for green stormwater infrastructure (GSI) by examining how participation 

varies across wealth, income, and race. Eligibility decisions by program managers and 

participation decisions by eligible household shape the spatial distribution of local co-

benefits of GSI policies primarily designed to reduce stormwater runoff. 

Cities around the world have made significant public investments in urban greening. Urban 

greening is associated with increased walkability, reduced stress, better air quality, and 

improved cardiometabolic health (Cavanagh et al., 2009; Currie and Bass, 2008; Pugh et al., 

2012; Kardan et al., 2015; South et al., 2018; Sugiyama et al., 2008; South et al., 2015). 

Greening reduces urban heat island effects (Bowler et al., 2010; Ziter et al., 2019), which is 

especially salient as many cities face increasingly hot summers (Jiang et al., 2019). Greening 

also helps manage urban stormwater runoff volumes and quality. Consumers value the local 

public benefits of urban greening as several studies show that trees and green space capitalize 

into private home values (Sander et al., 2010; Netusil et al., 2010; Kadish and Netusil, 2012). 

The benefits of urban greening are not delivered equitably in many cities, even though 

the costs of urban greening are borne by all taxpayers or utility ratepayers. In the United  

States, for example, neighborhoods that were historically “redlined” and subject to racial  

discrimination have fewer trees and are hotter than areas that were not redlined (Hoffman et 

al., 2020; Locke et al., 2020; Wilson, 2020)

by
 g

ue
st

 o
n 

A
pr

il 
20

, 2
02

4.
 C

op
yr

ig
ht

 2
02

2
D

ow
nl

oa
de

d 
fr

om
 



4  

i. Analysis of Atlanta, Georgia, U.S. indicates that Black communities currently have the 

least access to urban green spaces (Dai, 2011). Similarly, even without a history of redlining 

researchers in Australia find low-income neighborhoods are less green (Astell- Burt et al., 

2014). 

Many water and stormwater utilities run programs that promote broad-scale urban 

greening by implementing GSI. The impetus of most GSI programs is to reduce runoff 

during storms that deliver enough stormwater to exceed the capacity of the conveyance 

system or wastewater treatment plant, resulting in untreated wastewater being discharged into 

local water bodies. In the U.S., these discharges, known as combined sewer overflows 

(CSOs), constitute violations of the Clean Water Act. Many water agencies are required to 

reduce their CSOs and operate under consent decrees with the U.S. Environmental 

Protection Agency. Proposed CSO solutions include implementing multi-billion dollar 

stormwater management programs (U.S. EPA 2017), many of which rely heavily on GSI 

(BenDor et al., 2018).ii In addition to reducing stormwater runoff, GSI facilities like 

bioswales, raingardens, and green roofs contribute to the larger suite of co-benefits associated 

with urban greening.  

Cities use three primary forms of GSI policies. First, GSI is often required for new 

construction or additions as part of zoning regulations. Second, local governments and 

utilities install and maintain GSI in public spaces. Examples include large bioswales, 

retention ponds, green streets, and raingardens in public spaces like parks and rights-of-way.  

Research suggests, however, that in some cities there is not enough public land available to 

achieve the density of GSI needed to meet stormwater reduction targets required for water 

quality goals (Montalto et al., 2007). Therefore, the third type of policy focuses on 

subsidizing installation of GSI on private land, such as single family residential 

properties. Cities justify subsidies because GSI is a quasi-public good that provides a 

combination of private and public benefits. This quasi-public good nature also means that 

private benefits flow to homeowners and immediate neighbors who install subsidized GSI, 

including capitalizing into home values, while all ratepayers or taxpayers bear the cost. 
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Research indicates that consumers are willing to pay for GSI on their properties (Zhang 

et al., 2015; Iftekhar et al., 2021). Because GSI subsidies transfer resources from ratepayers 

to participating homeowners and neighbors, there are equity and environmental justice 

consequences of these policies. 

We study the distributional impacts of voluntary GSI policies using data from the Rain- 

Wise program in Seattle and surrounding King County that subsidizes raingardens and cisterns. 

Our primary research question is how private benefits of the RainWise program are 

distributed across ratepayers funding the program. In RainWise, as in many other voluntary 

environmental programs, there are two channels that drive distributional impacts: 1) the 

screening of whether a homeowner is eligible for participation and 2) the choice to 

participate. GSI program managers will rationally target GSI investments to places that are 

likely to lead to the largest water quality benefits, which may inadvertently correlate 

spatially with income or even mimic historic patterns of housing discrimination. For 

example, if installations to prevent CSOs have the largest impact when installed near a 

water body that receives stormwater flows, the eligibility stage could be regressive, as 

water-adjacent or waterfront homes often sell at a premium. Furthermore, almost all 

programs have home ownership as the primary eligibility screen, which is strongly 

correlated with income in the United States (Bhutta et al., 2020). We also analyze the 

distributional impacts of private decisions to participate in voluntary GSI programs, 

conditional on eligibility. These features may vary depending on the location, eligibility 

constraints, and the design of the program.  

We make three contributions to the literature. First, we estimate the distributional 

impacts of a voluntary environmental program using household-level observational data. 

Prior research on GSI adoption has used neighborhood-level participation rates and did not 

focus on environmental justice concerns (Ando and Freitas, 2011; Lim, 2018). We 

examine the distributional effects across three key variables: wealth, income, and race. 

Using household-level data is important when participation effects are non-linear, since 

average Census block group characteristics can mask heterogeneous effects. Second, we 
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consider how both the household participation decision and the utility’s eligibility criteria 

affect the overall distributional effects of the policy. This is critical because we find that 

eligibility and voluntary participation channels have opposing effects on the progressivity of 

the program. Third, we utilize a novel method for measuring the type of households that 

select into voluntary programs by using housing sales prior to a household signing up for a 

program. This isolates the selection effect from any potential capitalization effect from 

GSI. Housing sales data are often available at the household level, which makes prior sales 

an attractive metric for studying distributional effects of programs where the location of the 

participating homes is known. 

We find that RainWise administrators (inadvertently) chose eligible areas that were, on 

average, wealthier than a typical Seattle neighborhood, which is in turn wealthier than a 

typical King County neighborhood. Our results show that, conditional on eligibility, upper 

middle-class households are most likely to participate. Within eligible areas, the wealthiest 

households and neighborhoods with the highest concentration of minorities have lower 

participation rates. The challenge of recruiting the most disadvantaged households persists even 

though resources were deployed to specifically target low-income and minority households. 

The aggregate distributional effects depend on both eligibility and participation. Among all 

ratepayers, the average home price is similar for program participants and nonparticipants, but 

conditional on eligibility, participants live in less expensive homes than non-participants. 

E x a m i n i n g  t h e  e f f e c t s  a c r o s s  t h e  h o u s i n g  v a l u e  d i s t r i b u t i o n  

s h o w s  t h a t  the least and mos t  expensive homes in King County are less likely to 

participate relative to homes in the upper-middle portion of the housing value distribution. 

Applying quantile regression to our hedonic selection model we find highly nonlinear 

selection effects across the house price distribution. We also examine variation in the cost of 

individual GSI installations. GSI in the wealthiest homes are substantially less cost-effective in 

terms of the gallons of stormwater mitigated per dollar.  This suggests wealthier homes may 

prioritize aesthetic features of GSI, and that selection effects do have economic consequences. 

Our research engages with growing discussions of how to evaluate benefits from 
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environmental policy. Much of the environmental justice movement, including the EPAiii 

and the academic literature, has focused on exposure to environmental hazards such as 

pollution, toxic waste, and water contamination (Mohai et al., 2009; Banzhaf et al., 2019). 

Recent examples in economics show that the Clean Air Act has reduced absolute differences 

in racial disparities in air pollution exposure while relative differences persist (Colmer et al., 

2020). We contribute to this literature by examining the distributional implications of the co-

benefits from GSI policy, as opposed to the direct effects of reducing pollution. We also 

contribute to the growing economics literature on GSI. Most of the current literature uses stated 

preference (Londoño Cadavid and Ando, 2013; Newburn and Alberini, 2016; Brent et al., 2017; 

Ando et al., 2020) and revealed preference (Zhang et al., 2015) methods to estimate the 

willingness to pay (WTP) for the benefits of GSI. We focus on who receives those benefits 

when cities employ policies incentivizing voluntary installation on private property. 

 
2 Background & Setting 

 
Seattle discharged 1.1 billion gallons of raw sewage annually by CSOs from 2006-2010 

(Times, 2013). The city’s consent decree with the U.S. EPA requires reducing CSOs by 

95% by 2025 (EPA), 2013). As part of the EPA consent decrees, King County and Seattle 

developed an integrated stormwater management plan with a prominent role for GSI. Seattle 

and King County plan to collectively reduce 700 million gallons of their stormwater mitigation 

requirements through GSI.iv The costs of stormwater mitigation were estimated at $700 

million for King County and $600 million for the City of Seattle, managed by King County 

Land and Water Division and Seattle Public Utilities (SPU), respectively.v The City and 

County work collectively towards their stormwater mitigation requirements. They construct, 

own, and operate public GSI, and require any new construction (or renovations that increase 

impervious surface) to include mandatory on-site private GSI.vi 

RainWise is a voluntary GSI program subsidizing cisterns and/or raingardens on private 

residential properties and is jointly operated by King County and SPU. Each utility is 

responsible for funding RainWise in specific eligible CSO basins, though all eligible basins 
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are within Seattle city limits.vii A CSO basin is an area that drains to a specific CSO location 

(see Figure A1 in the Appendix) based on the sewer network. Eligibility is restricted to basins 

deemed most critical to meet water quality goals.viii 

All residential properties in an eligible basin can receive RainWise subsidies for cisterns, 

and raingarden eligibility is further restricted by land stability, drainage, and distance to 

contaminated sites.ix RainWise cisterns and raingardens must be installed by an approved 

contractor. The homeowner signs a contract that the system must be maintained for a 

minimum of five years. 

Uptake of RainWise is relatively low: the program began in 2008 and as of July 2018 

there were 1,525 participating households among roughly 60,000 eligible households. From 

2015-2018, the last three years of our data, an average of 266 households per year have 

signed up. The average RainWise rebate covers 90% of the GSI installation costs. The average 

project costs slightly more than $5,100. However, the upfront costs are borne by the homeowner 

and the subsidies count as taxable income. The City and County were aware that these 

constraints, and the remaining out of pocket costs, might limit participation among low-income 

households. In response, a RainWise Access grant program was created to provide an additional 

$1,000 for low-income homeowners. 

RainWise provides a mix of public and private benefits. The primary public benefit in- 

tended to be delivered by the program is improved water quality through reduced peak  

stormwater runoff and subsequent reduction of CSOs. The private benefits are reduced 

nuisance flooding (e.g., basement flooding) and, if installing a cistern, access to free 

irrigation water for gardens. Figures A2 and A3 in the Appendix provide examples of 

raingardens and cisterns funded through RainWise as well as quotes from homeowners 

describing their motivations. It is likely that participants sign up for RainWise due to a 

mix of private and public benefits. Some participants mentioned the private benefits of 

subsidized land- scape renovation, while other participants described the importance of public 

water quality benefits. 

RainWise staff market the program in four ways. First, they send direct postcard 
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mailings to eligible households. Second, they use social media ad campaigns as well as the 

continuous presence of agency-run social media and the 700 million gallon website. Third, 

they run workshops to promote the program. Finally, they staff booths at third-party events 

such as festivals. Upon reviewing outreach material obtained through a public records 

request, they appear to be targeted spatially (eligible basins) and opportunistically (festivals) 

rather than by demographics. In addition to formal outreach efforts some RainWise 

participants place RainWise signs in their front yards and there is anecdotal evidence that 

peer effects are an important determinant in participation. 

One exception to the targeted marketing is the active efforts to promote equitable access to 

RainWise though the City’s Racial Equity Toolkit (RET). The RET seeks to address, 

“challenges experienced by RainWise (RW) customers and contractors who are low-income, 

recent immigrants, and/or from communities of color.”x Clearly RainWise managers are aware 

of a perception of unequal access and have active goals of making RainWise participation more 

equitable. 

The distributional effects of RainWise depend on the distribution of both the benefits 

and the costs of the program, which is funded by wastewater charges.  Even though all the 

areas eligible for the RainWise program are all within Seattle city limits, the program is 

jointly funded by Seattle Public Utilities and King County Wastewater Treatment Division 

(KCWTD). Because both generate their revenue from ratepayers, the costs of the programs for 

households in the respective service areas depend on the wastewater rates. KCWTD applies 

a fixed charge of $47.37 for each single family residence and  charges multifamily, 

commercial, and industrial users $47.37 for each 7.5 hundred cubic feet (HCF) of water. 

SPU’s sewer rates are $15.55 per HCF. Wastewater is estimated as the total metered water 

use net of any outdoor water use. It is equal to metered water use during winter months 

(November-April) because SPU assumes there is no outdoor water use. During summer 

months it is equal to the average of the prior winter’s water use. According to  SPU, the 

typical monthly bill for stormwater only in 2021 is $71.68. Households with in- comes at 

70% of the state median income or below are eligible for Utility Discount Program, which 
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gives them a 50% credit on their bill. The City separately charges property owners a fee 

(levied on the annual property assessment) for stormwater management services based on 

each property’s estimated impact on the City’s drainage system, though this revenue  stream 

is separate from the one funding RainWise. In all, it is difficult to argue that the rate 

structure used by either jurisdiction to raise money for RainWise is progressive. KCWTD  

charges a fixed, non-volumetric charge which is regressive. For SPU’s volume-based charge 

to be progressive, the city’s Utility Discount Program would need to have high uptake, or 

the income elasticity of water use would need to be highly elastic. A recent meta-analysis 

found the central estimate to quite inelastic (0.15 or lower) (Havranek et al., 2018), and we 

have no information on the percentage of eligible low-income households who use the 

Utility Discount Program. 

From the perspective of a water agency with mandated stormwater reduction targets, 

implementing GSI in the areas with the highest degree of impact in reducing CSOs is 

essential. In some cases, however, hydrologically important intervention areas may not 

spatially coincide with areas that would gain most from the co-benefits of urban greening. 

Prioritizing based on hydrology may also inadvertently target areas with higher-income 

households. There are other ways to develop rationales for siting GSI components (Hopkins 

et al., 2018; McPhillips and Matsler, 2018). Heckert and Rosan (2016) suggest a Green 

Infrastructure Equity Index to prioritize investment locations. The dual challenges of 

equitably distributing urban greening and meeting stormwater goals raises the question of 

whether water agencies should be tasked with delivering urban greening to all. Jennings et 

al. (2017) discuss green space planning projects in cities that are directly targeted to support 

equity, without being linked to stormwater. 

Recent demographic and economic changes in Seattle, located in King County (WA), 

are important when considering the distributional impacts of GSI policy. King County, the 

twelfth most populous U.S. County, has seen explosive growth in recent years, with the 

population expanding by over 50% since 1990 compared to 32% for the U.S. overall. Our study 

area is wealthy, with a median income over $95,000 in 2018.   Since 2000 only New York City 

has experienced a larger increase in median income.xi 
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3 Data 
 
We merge four data sources to generate our final datasets. Our GSI data include geo- 

referenced records on all public and private GSI installations in Seattle obtained by a Public 

Disclosure Request to the City of Seattle. Our focus is on the RainWise program, and we 

use the proximity to public and private mandatory GSI installations as explanatory 

variables in our model for RainWise participation. Parcel characteristics come from the 

King County Assessor’s Office for all residential parcels in King County. They were 

merged with arms-length residential housing sales from the King County Assessor’s Office. 

We collect demographic data at the Census block group level from the U.S. Census 

American Community Service using a weighted average of the five-year samples 

depending on the year of observation. The City of Seattle also maintains a geospatial data 

on tree canopy that we merge with all parcels in Seattle. We calculate the percentage of each 

Census block group covered by tree canopy. Since this dataset is developed by the City of 

Seattle it is not available outside of Seattle city limits. Most of the GSI records have a 

parcel identification number (PIN) that we use to merge with the Assessor data; the 

remainder were merged spatially.xii 

We generate several variables for the analysis. First, we use sales data from the Assessor’s 

Office to predict housing prices for all homes as a proxy of household wealth. This includes 

properties not sold during our study period. We think this is a more transparent proxy for 

housing values than assessed values, another common proxy for house values.xiii The 

prediction model regresses real housing sale prices on property characteristics, year- by-month 

fixed effects and fixed effects at the subarea level, the finest available spatial geometry. The 

prediction model results are presented in Table A1 in the Appendix. We generate three spatial 

proximity variables that vary over time: the cumulative number of RainWise participants, 

private GSI installations, and public GSI installations within a one mile radius for each year of 

the sample. These spatial variables are calculated based on the cumulative counts at the start of 
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the year to avoid contemporaneous factors that affect both household adoption and peer 

adoption. We also calculate two static proximity variables: the number of parks within a 

mile of a property and the percentage of each Census block    group covered by trees. 

We use two datasets for our empirical analysis. The first consists of a yearly panel of all 

residential properties within the eligible areas. We use this data to model voluntary participation 

in the RainWise program. The second dataset uses all residential arms-lengths housing 

transactions both inside and outside RainWise eligible areas. We use this transaction dataset to 

estimate a hedonic selection model, focusing on transactions before RainWise GSI was 

installed to isolate the distributional effect from any capitalization of GSI into the value of 

the property. 

We begin by describing summary statistics on the first of two channels through which 

the private GSI program can have distributional impacts: the administrative choice of which 

areas are eligible. The panels of Figure 1 overlay the areas of Seattle that were determined to be 

eligible for the program by RainWise staff (shown with dark outlines) with Census block group 

level data on four key variables. The top panels show that eligible areas, particularly those in 

eastern Seattle near Lake Washington, are among the neighborhoods in Seattle with the highest 

home values and highest median incomes. There are, however, eligible areas that have lower 

incomes and home values, notably in south Seattle, where the percentage of non-white residents 

is higher (bottom-right panel). There is no discernible pattern between tree cover and RainWise 

eligibility (bottom left panel). 

The summary statistics for both datasets are in Table 1. The first three columns present 

sample means for properties in King County excluding Seattle, in the City of Seattle excluding 

the eligible area, and the eligible area. The last two columns present p-values from t-tests for 

equality of means for the RainWise-eligible areas compared to Seattle and King County 

(excluding Seattle), respectively.xiv The t-tests were performed using the sample of households 

for the parcel characteristics from the King County Assessor, and we collapse the data to block 

groups to perform the t-tests for the ACS variables. Panel (a) of Table 1 shows the sample 

statistics for all the residential parcels and panel (b) only includes parcels that were sold during 
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the sample period.xv 

Both samples show that homes are more expensive in Seattle compared to homes out- 

side of the Seattle city limits in King County. However, even within Seattle, homes are 

significantly more expensive in the RainWise eligible areas, though characteristics such as 

lot size, square footage and the age of the home also differ by area. This is likely because 

the eligible areas were determined based on hydrologic priority and are therefore close to major 

water bodies that households view as valuable recreational and visual amenities. The median 

income is higher in the eligible area compared to ineligible areas of Seattle. How- ever, the 

median income of King County outside of Seattle is slightly higher than the eligible area. There 

are no differences in tree cover between Seattle and the eligible area. Census block groups in 

eligible areas have a lower percentage of non-white residents and a higher percentage of 

residents with four-year college degrees than Seattle overall or King County (excluding 

Seattle). These summary data do not capture who in the eligible areas chooses to sign up 

for RainWise, but rather highlight the challenge in balancing environmental and equity 

goals when setting eligibility for voluntary environmental programs like RainWise. 

Next, we non-parametrically examine both eligibility and participation by wealth using 

deciles of housing values. Panel (a) of Figure 2 shows the share of households in each decile 

of home values that were eligible for the program. The housing value deciles were created using 

data from both King County and Seattle, since ratepayers in both jurisdictions fund the 

program. Across all ratepayers, 12.5% of households were eligible for RainWise. The first 

three housing value deciles have a much lower share of eligible households at roughly 5%, 

whereas deciles 5-10 all have a higher share of eligible households. Panel (b)  of Figure 2 

shows the participation rates conditional on eligibility in green (average=2.3% of eligible 

households participated). Among eligible households, the participation rate is roughly flat 

for the first seven housing value deciles, and then sharply declines for the most expensive 

properties. The figure also shows the overall participation rates within each housing value 

decile in tan (average=0.3% of all households in King County and Seattle participated). Since 
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inexpensive homes are less likely to be eligible, the overall participation rate is highest for the 

middle income deciles. 

 
4 Methodology 

 
We examine the distributional effects of private, voluntary GSI policies. Drawing from the 

Mohai et al. (2009) review of the environmental justice literature with respect to both in- come 

and racial composition, we evaluate how participation in the RainWise program varies across 

three key variables: housing values, median income, and the percentage of non-white residents. 

Housing values are a proxy for wealth and a key advantage of housing values is the 

availability of property-level data. We use median income measured from the U.S. Census at 

the block group level. The percentage of non-white residents determines whether 

underrepresented minorities also benefit from increased green infrastructure through Rain- 

Wise.xvi We explored using the percentage of Black residents as a measure of racial 

representation and found no statistically-significant patterns. Only 5% of residents in King 

County are Black, however, whereas almost 30% of the population is non-white. Asian is 

the largest minority ethnic group at 15% and there are substantial numbers of non-native 

English speakers. RainWise has specifically targeted language as a barrier and developed 

marketing and outreach material in Spanish, Chinese, and Vietnamese. Lastly, we also con- 

sider neighbor variables to incorporate the role of peer effects in RainWise participation. 

We do not attempt to causally identify peer effects, but rather discuss how peer effects can 

amplify existing patterns of participation. 

We use two primary models to estimate the distributional effects of RainWise. Our first 

approach estimates the probability that a household will sign up for RainWise in a given 

year, using program data from 2010-2018. Our second model is a hedonic selection model that 

uses observed housing sales as the dependent variable and a variable indicating a property 

will sign up for RainWise in the future as the primary independent variable. The interpretation 

of the RainWise variable in the hedonic model is whether homes that eventually sign up 

for RainWise are more or less expensive than houses that do participate. Using sales prior to 
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RainWise adoption ensures that we estimate a selection effect as opposed to a capitalization 

effect of RainWise. Each of the models, including the statistical techniques to estimate the 

models, are presented in the following subsections. 

 
Participation Model 

 
The participation model is formalized in equation 1. 
 

𝑅𝑊𝑖𝑡 = 𝛼 + 𝜃1 ln(𝐻𝑜𝑚𝑒𝑉𝑎𝑙𝑢𝑒𝑖𝑡) + 𝜃2 ln(𝑀𝑒𝑑𝐼𝑛𝑐𝑖𝑡) + 𝜃3𝑁𝑜𝑛𝑊ℎ𝑖𝑡𝑒𝑖𝑡 + 𝜷𝐗𝐢𝐭 + 𝜖𝑖𝑡  (1) 
 

In this model the dependent variable, 𝑅𝑊𝑖𝑡, is a dummy {0,1} if household i signs up for 

RainWise in year t. Our parameters of interest are 𝜃1 − 𝜃3, which are the coefficients on 

predicted home values, median income, and % non-white residents. We use the natural log of 

predicted home values and median income to fix the scale in percentage terms. We include 

additional explanatory variables in Xit such as housing characteristics, demographics at the 

block group level, neighbor GSI variables, and year fixed effects.xvii    The general 

interpretation of the model coefficients is the impact of a variable on the probability of a 

parcel signing up for RainWise in a given year. Because the dependent variable in our 

selection model, 𝑅𝑊𝑖𝑡, is binary and therefore not normally distributed, we use a logit 

model. We cluster our standard errors at the block group level. 
 
Hedonic Selection Model 

 
A limitation of the participation model is the lack of property-level data on income or home 

price. As described above we estimate home values in a predictive model, which is not as 

accurate a proxy for household wealth as the actual sale price of the home. Therefore, we 

also estimate a model where we focus on homes sold during our study period. The tradeoff is 

a smaller sample that may not be representative: not all homes were sold during this time. 

Examining the two datasets in Table 1 reveals some differences although the general 

magnitudes and differences between King County, Seattle, and the RainWise eligible areas 

are similar in the two samples. 

 
ln(𝑃𝑖𝑡) = 𝛼 + 𝛿1𝑅𝑊pre,it + 𝛿2𝑆𝑒𝑎𝑖 + 𝛿3𝐸𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑖 + 𝜖𝑖𝑡  (2) 
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The dependent variable is the natural log of the real sales price (in January 2018 dollars), so the 

coefficients are interpreted as the marginal effect on home values in percentage terms. The 

primary variable of interest, 𝑅𝑊pre,it, is a dummy equal to one if a house was sold prior to 

RainWise participation. This variable captures the types of homes that will eventually 

participate in RainWise. The 𝑆𝑒𝑎𝑖 and 𝐸𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑖variables are dummies indicating that the 

home was in the Seattle city limits and the eligible area, respectively. The hedonic model 

uses data from all of King County to evaluate how housing prices depend on both eligibility and 

adoption. In the hedonic model we do not include any controls or spatial fixed effects 

because we explicitly want the RainWise coefficient to capture selection effects. Excluding 

controls ensures that we capture whether homes that eventually sign up are in more 

desirable neighborhoods or have more bedrooms, bathrooms, or square footage. 
 

To clarify our hedonic selection model, consider a standard hedonic model that attempts to 

estimate the capitalization effect of RainWise. The standard hedonic model would replace 

𝛿1𝑅𝑊pre,it in equation 2 with 𝛿1𝑅𝑊post,it, where 𝑅𝑊post,it, is an indicator for a home that 

sold after RainWise GSI was installed.  Typically, 𝛿1 will capture two effects: the 

capitalization effect of GSI on home values and a selection effect if participation in 

RainWise is correlated with unobservables affecting housing values. By contrast, our 

parameter 𝛿1 eliminates the capitalization effect because 𝑅𝑊pre,it captures sales occurring 

before RainWise GSI is installed while retaining the selection effect. Therefore, the 

regression isolates how selection into RainWise affects property values. 

5 Results 
 
Participation Model Results 

 
We begin with the results from the participation model. Again, all the participation models 

are run exclusively on properties located within eligible areas. We present the results of the 

average marginal effects from the logit regressions in graphical form in Figures 3 and 4. The 

full table of results for the logit regressions, along with the alternative models used for 

robustness, is available in the Appendix. 
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We estimate two variations of the logistic regression. The first model presents the average 

marginal effect of the three key variables on participation, presented in panel (a) of Figure 3. 

Higher valued homes in eligible areas are less likely to participate, on average. The 

interpretation of the home value results is that a 100% increase in home value would decrease 

the annual participation rate by 0.1 percentage points. This is relative to an average annual 

participation rate of 0.25%. The median income of the Census block group i n  w h i c h  

t h e  h o u s e  i s  l o c a t e d  does not have a meaningful impact on participation.xviii Census 

block groups with a higher percentage of non-white residents have a lower probability of 

participating in RainWise. Changing a neighborhood from all white to all non-white would 

decrease the annual participation rate by almost 0.4 percentage points. 

We estimate a second logistic regression to examine the full distribution of the variables 

rather than focusing on their average effects. This is important for environmental justice 

considerations where the outcomes of the poorest or neighborhoods with high concentrations of 

minorities are critical. We replace the three key variables (home value, income, percent non-

white) with indicators for deciles of each variables, with the fifth decile omitted. The decile 

cutoffs are based on data for all ratepayers though these estimation models 

only use data for properties located in RainWise-eligible areas. 

The results are presented in panel (b) of Figure 3. One can interpret these decile coefficients 

as the marginal effect on participation of being in that decile relative to the fifth decile. For 

example, panel (b) shows that homes within the highest two housing value deciles (blue) are 

significantly less likely to participate relative to the fifth decile. A house- hold in the highest 

home-value decile is 0.1 percentage points less likely to sign up in a given year than a 

home in the fifth decile. The pattern is noisier for median income; per- haps due to only 

having variation at the block group level. All the coefficients for the percentage of non-white 

residents are negative, indicating that participation is highest in the omitted fifth decile. There 

is a monotonic decreasing pattern and Census block groups with the largest minority 

populations are least likely to participate. We note that since the fifth decile is omitted and all 

the coefficients are negative, that the fifth decile of non-white had the highest participation 
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rate.   The general pattern is the same if we omit the first decile instead of the fifth except for a 

positive and insignificant coefficient for the fifth decile. 

Other studies have found evidence that peer effects guide individual decisions for GSI 

adoption (Lim, 2018) as well as other environmental outcomes for residential homeowners 

(Bollinger and Gillingham, 2012; Bollinger et al., 2020). We present the results for the neighbor 

variables in Figure 4. We focus on the counts within 1 mile of the property of four 

variables: RainWise installations, mandatory private GSI, public GSI installations, and parks. 

The variables are all standardized, so the interpretation is the effect of a one standard 

deviation change in the variable. The three GSI variables vary over time and are the cumulative 

counts in a given year. RainWise installations show strong positive peer effects: households 

who live in neighborhoods where more of their neighbors have adopted Rain- Wise are more 

likely to participate themselves. This may be due to a positive amenity value of RainWise 

installations, or a simple advertising effect: participants often put a yard sign provided by the 

utility next to their raingarden. 

We find negative peer effects, however, for mandatory private GSI installations.  One 

reason may be that mandatory private GSI may consist of features that are not as attractive 

or functional as RainWise. Alternatively, since mandatory GSI is required for new 

construction or additions the regions of the city experiencing a building boom may be 

negatively correlated with RainWise adoption. We find no effect of proximity to public 

GSI or parks on RainWise participation. We do not interpret the peer effects as causal due 

to the reflection problem documented by Manski (1993). Therefore, we cannot distinguish if 

a RainWise installation truly causes an increase in their neighbors’ adoption probabilities, or 

if there are spatial unobserveables driving clusters of adoptions. Either way it is clear that  

neighborhood-level penetration is an important factor in RainWise participation. 

 
Robustness for participation model 

 
The panel nature of the dataset and time-varying neighborhood characteristics present a 

complication.   Namely, we must make an assumption about how to treat the time periods 
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after a household adopts RainWise. In a panel logit model, coding the dependent variable 

as one after adoption incorrectly allows factors that occur after adoption to affect predicted 

adoption. For example, suppose household A signed up in 2015 and their neighbor,  

household B, signed up in 2016. Clearly, household B’s adoption decision did not affect 

household A, since household A had already signed up. If we code our RainWise variable  

for household A as one after adoption (i.e., in 2015, 2016, and 2017) the model incorrectly 

allows household B’s adoption to affect household A’s probability of adoption. We drop 

the post-adoption observations from the sample – another option is coding them as zero - 

but neither approach is entirely correct. Instead, we supplement a panel logistic model with 

a time-varying survival model which accounts for the fact that households “drop out” of the 

sample after they participate in RainWise. Survival models are common in epidemiology to 

estimate the duration until death or the probability of survival. In our setting ‘death’ is 

represented by a household signing up for RainWise. We choose Aalen’s additive regression 

model (Aalen, 1989) that accommodates time-varying hazard rates since some of our 

variables change over time such as the number of neighbors that sign up for Rain- Wise. As 

further robustness checks we estimate a linear probability model (LPM) and a Cox proportional 

hazard model. 

We examine the impact of housing values and neighbors’ RainWise adoption from the 

results of the survival model by plotting the cumulative regression coefficients from Aalen’s 

model in Figure A5.xix These curves plot the cumulative impact of a unit change of the variable 

(from its mean) on the RainWise adoption rate over time. Both the average effects and the 

decile effects are in the Aalen’s model are similar to the panel logit estimator. 

Additionally, the LPM and Cox models also produce similar estimates as shown in Table A3. 

Our last robustness check relates to the inclusion of variables capturing peer effects. Even 

though we are not estimating causal effects in our model if the endogenous neighbor variables 

are correlated with the core distributional variables it may change their estimated parameters. 

As a robustness check we replicate the results presented in Figure 3 in a model that excludes the 

neighbor variables. The results, shown in Figure A6 in the Appendix, are essentially the same. 
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Hedonic Selection Model Results 

 
The results for the hedonic selection model are presented in Table 2. Recall that the Rain- Wise 

variable identifies a home sold before the homeowner signs up for RainWise. The RainWise 

variable’s interpretation is the difference in housing prices for homes that sign up for 

RainWise relative to homes that do not sign up. The first three columns of Table  2 use all 

sales in King County. Column (1) does not include dummy variables for Seattle and the 

eligible area (Eligible). Therefore, the interpretation is the unconditional effect on selection that 

encompasses both eligibility and voluntary participation relative to all King County 

residents. Homes that in the future will sign up for RainWise are 3% less expensive than 

other homes in King County and the effect is not statistically significant.  The model  in 

column (1) does not account for the fact that only certain homes are eligible, and that all 

eligible homes are in Seattle. Column (2) controls for whether the home is in the Seattle  

city limits, and the selection effect decreases to -15%. This is because homes in Seattle are 

more expensive than the average King County home. The joint effect of being in Seattle and 

participating in RainWise is a positive 2%. Next, when controlling for the eligible area and  

Seattle the selection effect decreases to -21%. Again, as shown in the non-parametric 

analysis, homes in RainWise-eligible areas are more expensive than the average Seattle 

home. The joint effect of the being in Seattle, in an eligible area, and participation is 3.7%.  

The joint effects are calculated through linear combinations of the parameters, and neither 

linear combination is statistically different than zero. Finally, focusing only on the 

voluntary participation channel (model 4), we find the selection effect is -18%: among 

homes located in eligible neighborhoods, houses that will eventually adopt RainWise sell 

for 18% less. 

To investigate effects across the housing value distribution, we estimate quantile regressions 

for quantiles ranging from 0.05 to 0.95 in increments of 0.05 based on Firpo (2007). The 

quantile regressions only include the RainWise indicator and therefore have the interpretation 

of the difference in each house price quantile among the houses that will eventually sign up 
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for RainWise compared to homes that never sign up. For example, the coefficient on the 

median represents the difference in the median home price for eventual RainWise participants 

and non-participants. We estimate the quantile regression on three different samples: King 

County, Seattle, and the eligible area (Eligible). The results are presented graphically in Figure 5 

where the solid line is the point estimate, and the shaded area is the 95% confidence interval. 

In King County, lower quantiles (0.05-0.4) have positive coefficients, indicating that 

among lower-valued homes RainWise participants reside in more expensive houses.  The 

King County results incorporate the strong eligibility effect: the lowest priced eligible 

homes are more expensive than many homes in King County. For example, the 10th 

percentile home is about 10% more expensive for RainWise participants compared to non- 

participants. This indicates that within King County the least expensive homes are less likely 

to participate in RainWise. This effect turns negative around the median and is strongly 

negative for more expensive homes. The 90th percentile is about 20% lower for participants 

than non-participants. The general downward trend across the housing price distributions 

indicates that the selection effects become stronger and more negative among more expensive 

housing value quantiles. The pattern is essentially replicated but shifted down for Seattle and 

the eligible area. RainWise homes are less expensive across the housing value distribution in 

Seattle and the eligible area, with the largest effect among the most expensive homes. The 

difference in the 90th percentile across RainWise participation status is 30% in Seattle and 

almost 40% in the eligible area. 

We find that homes that will eventually sign up for RainWise sell for significantly less 

than other eligible homes. One explanation is that property owners sign up for RainWise as 

part of larger renovation projects, and therefore we are simply capturing homes that are in 

poor condition. To investigate whether future RainWise homes are “fixer-uppers” or lower 

valued homes in good condition, we merged building permit data from King County Assessor 

to the sales data. We defined a RainWise renovation home as a transaction where a home 

was sold prior to RainWise installation, and the home had a building permit after the 

RainWise installation. Across King County 8% of transacted properties have a building permit 
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associated with their parcel, compared to 5% of RainWise homes that were sold. This argues 

against the notion that our RainWise variable is picking up homes in poor condition that sign up 

for RainWise as part of a larger construction project. 

 
Project costs 

 
We also examine whether the size of the project scales with the environmental justice variables. 

We regress the total cost of the project, and share of the project that was subsidized, on our 

home values, median income, tree canopy, and non-white. This model focuses on RainWise 

participants, and the sample consists of households that signed up for RainWise. 

The results are in Table A2 in the Appendix. A one standard deviation increase in home 

value increases the total cost of a RainWise project by approximately $200, or roughly 4%. 

Block groups with more non-white residents have more expensive projects. There is no 

discernible effect of any of these variables on the percentage of the project funded by Rain- 

Wise, although this might be due the fact that RainWise funded such a high percentage of  

most projects. 

Each RainWise project provides an estimate for the gallons of mitigated stormwater. We 

examine the relative cost effectiveness of RainWise dollars by dividing the gallons of mitigated 

by the cost of the project. More expensive homes on average have lower cost effectiveness; 

and most of the effects are concentrated in the most expensive homes. This provides suggestive 

evidence that landscaping in expensive RainWise homes may prioritize aesthetics over 

stormwater mitigation. Homes in block groups with more non-white residents also have 

projects with lower cost effectiveness. 

6 Conclusion 
 
Policymakers and the public are increasingly concerned about the distributional effects of 

environmental policy. While private benefits flow to homeowners who install subsidized GSI 

on private property, all ratepayers bear the cost of subsidies in order to achieve the public good 

of lowered CSOs and improved water quality. As a result, GSI subsidies are transfers from 
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ratepayers to participating homeowners. Are these transfers a net subsidy to participants? Or are 

they being compensated for their willingness to accept a landscape feature that provides public 

stormwater benefits but zero or negative private benefits? Although it is possible that 

participating homeowners find Rain- Wise installations ugly or onerous to maintain, anecdotal 

evidence from the city suggests homeowners gain private benefits. Stated preference research 

from other settings has found that households perceive raingardens as a net positive and 

have a positive willingness-to- pay for them (Newburn and Alberini, 2016; Londoño Cadavid 

and Ando, 2013; Brent et al., 2017; Iftekhar et al., 2021). Furthermore, given that the SPU 

and King County subsidize approximately 90% of the installation costs, the private benefits 

need not be large before the payment is net utility-improving subsidy to participants. Who 

gains private benefits by receiving direct subsidies? 

We decompose the distributional effects of the policy into impacts at the eligibility stage and 

the participation stage. We find that RainWise administrators selected eligible areas with 

more expensive homes than other Seattle homes, which are in turn more expensive than 

King County properties. We find that subsidies for GSI on private land primarily benefit 

upper middle-class households when using home values as a proxy for wealth. The richest 

and poorest deciles are least likely to benefit directly by having a RainWise installation in their 

yard. Neighborhoods with a higher non-white population are also less likely to participate 

in RainWise. The lack of participation of the poorest households and non-white 

neighborhoods exists despite efforts by program managers to specifically target these groups 

through top-up subsidies and a Racial Equity Toolkit. 

As of late 2018, the total spending on RainWise projects was $7.6 million dollars. The 

program is believed to have reduced stormwater by an estimated 22 million gallons. While 

the investment is impressive, there is still significant additional stormwater retention necessary 

to achieve the goal of 700 million gallons. To date RainWise has accounted for roughly 10% of 

total gallons of stormwater reduced through GSI. If RainWise’s relative share of total GSI 

remains constant there will need to be more than a threefold increase in the current RainWise 

installations. As RainWise continues or expands, there are likely opportunities to incorporate 
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consideration of the distributional costs and benefits. 

Our results prompt raise two important questions about how to incorporate environ- mental 

justice priorities into GSI policy. The first question regards the tradeoff between water quality 

improvements and equitable placement of GSI. While estimating the spatial heterogeneity of 

water quality benefits from distributed public and private GSI is beyond our research scope, 

Lim and Welty (2017) suggest only very extreme differences in GSI placements will 

meaningfully affect water quality. This opens the possibility of relaxing eligibility requirements 

to achieve more equitable access to urban greening. Another question reflects the external 

validity of our results. Our finding that, conditional on eligibility, high income households 

are less likely to participate depends on the initial set of eligible homes. If RainWise expands 

to less affluent areas, would we find the same pattern that relatively wealthy homes do not 

participate?  Generalizing outside of Seattle is also difficult since the demographics of 

prioritized areas from a water quality perspective may differ in other locations. Just because 

eligibility was concentrated among wealthy white areas in Seattle does not mean that the 

most impactful GSI placement in other cities would exclude marginalized communities. 

Finally, we find strong suggestive evidence of peer effects in the participation decision, 

consistent with other research for private incentives to adopt environmentally friendly land- 

scaping (Lim, 2018; Brelsford and De Bacco, 2018; Bollinger et al., 2020). Peer effects 

create both challenges and opportunities for increasing participation in low-income neighbor- 

hoods. Low- and moderate-income residents are interested in participating in GSI programs 

(Mason et al., 2019), and targeted campaigns to reach these residents may have positive effects 

on uptake. If RainWise chooses to strategically expand eligible areas while implementing 

targeted campaigns, it may be possible to reduce or even eliminate distributional impacts. High-

quality causal estimates of the magnitude of peer effect could help identify the critical mass of 

initial low-income participants necessary to achieve equity goals. 
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Tables 
 

Table 1: Summary statistics and difference in means 

Panel (a) Summary statistics and difference in means for all properties 
Variable Mean 

KC 
Mean Seattle Mean RW 

Eligible 
T-KC T-SEA 

House Value 624321 637740 704639 0 0 
Med. Income 89454 78985 88810 0.793 0.001 
Non-White 0.314 0.319 0.287 0.122 0.054 
Tree Canopy  0.254 0.253  0.656 
Lot 28090 6180 5190 0 0 
Sq.ft. 2198 1833 1859 0 0 
Year Built 1977 1953 1944 0 0 
Degree 0.427 0.6 0.661 0 0 
Observations 508684 156236 63806   

 
Panel (b) Summary statistics and difference in means for properties sold (2010-2018) 

Variable Mean 
KC 

Mean Seattle Mean RW 
Eligible 

T-KC T-SEA 

House Price 624693 663593 758955 0 0 
Med. Income 102177 89342 100541 0.461 0 
Non-White 0.353 0.362 0.31 0 0 
Tree Canopy  0.262 0.256  0.382 
Lot 18762 5190 4470 0 0 
Sq.ft. 2361 1856 1910 0 0 
Year Built 1984 1964 1955 0 0 
Degree 0.485 0.662 0.752 0 0 
Observations 184189 56206 22414   

Note: The sample in panel (a) includes all residential properties in King County. 
Housing values in panel (a) are based on 2018 dollars and reflect the predicted values 
based on a regression model. The sample in panel (b) shows data for all arms-length 
residential property sales in King County from 2010-2018. Housing sales in panel 
(b) are the sale price in 2018 dollars. Year Built, Lot and Sq.ft. are based on the 
King County Assessor and are measured at the property level. Black, Med.  Income, 
and Degree are from the ACS and measured at the block group level. Degree is the 
percentage of the Census block group with a college degree or higher. Tree Canopy 
is measured at the neighborhood level and is only available within the City of 
Seattle; King County data are intentionally blank. T-KC and T-SEA show the p-
values for t-tests of difference in means for the RainWise eligible sample and the 
rest of King County and Seattle, respectively. The t-tests account for the unit of 
observation (block group or property). 
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Table 2: Pre-adoption hedonic selection model 
 King 

County 
King 

County 
King 

County 
Eligible 

 (1) (2) (3) (4) 
RainWise −0.032 −0.151∗∗∗ −0.213∗∗∗ −0.181∗∗∗ 
 (0.062) (0.047) (0.050) (0.057) 
Seattle  0.173∗∗ 0.124∗  
  (0.068) (0.067)  
Eligible   0.126∗∗  
   (0.054)  
Observations 180,334 180,334 180,334 21,890 
R2 0.072 0.097 0.102 0.132 

Adjusted R2 0.071 0.097 0.101 0.127 

Notes: The dependent variable is log of home price in 2018 dollars. 
Robust standard errors are clustered at the household level. ∗p<0.1; 
∗∗p<0.05; ∗∗∗p<0.01
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Figures 
 

Figure 1: Map of RainWise eligibility and combined sewer overflow locations 

 
 

Note: The map shows average for four key variables by Census block group: median 
home value, median income, percent Black and percent tree cover. The boundaries of 
the RainWise eligible areas funded by King County are shown in Black and those 
funded by SPU are shown in gray. 
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Figure 2: Eligibility and participation by housing value deciles 

(a) Eligibility shares 
 

(b) Participation rates 
 

Note: The vertical axis in panel (a) measures the share of eligible homes within each 
housing value decile. The deciles are created using predicted housing values for all 
ratepayers in King County. If eligibility were evenly distributed across the county each 
decile would contain 12.5% eligible homes. Panel (b) shows the participation rates for both 
eligible households and the overall participation rate by housing value decile. The 
participation rate for all ratepayers within each decile is calculated by multiplying the 
participation rate for eligible house- holds by the eligibility share. The labels on top of 
each bar show the mean home price within each decile in thousands of dollars. 
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Figure 3: Marginal effects of environmental justice variables on RainWise participation 

(a) Average effects 
 

(b) Effects by decile 
 

Notes: These plots show the marginal effects on key variables on RainWise participation 
from a logit regression. The solid bars are the coefficient estimates and the error bars 
represent 95% confidence intervals from standard errors clustered at the block group level. 
The vertical axis represents the change in the probability of participating in RainWise for 
a unit change in the variable. The full table of results for the logit regressions is available 
in Table A3. 
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Figure 4: Neighbor and neighborhood impacts on RainWise participation 
 

Notes: These plots show the marginal effects on key variables on RainWise participation 
from a logit regression. The solid bars are the coefficient estimates and the error bars rep- 
resent 95% confidence intervals from standard errors clustered at the block group level. 
The vertical axis represents the change in the probability of participating in RainWise for 
a unit change in the variable. The horizontal axis shows key neighbor and neighbor- 
hood variables: the number of neighbors within 1 mile that signed up for RainWise (# 
RainWise), the number of neighbors within 1 mile that installed private GSI due to new 
construction or additions ($ Private GSI), the number of public GSI installations within 
1 mile (Public GSI), and the number of parks within 1 mile. The full table of results for 
the  logit regressions is available in Table A3. 
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Figure 5: Quantile regressions selection effects 
 

Notes: The figure graphs the coefficients and 95% confidence intervals from quantile 
regressions of the log of real house prices on future RainWise participation for different 
samples. The interpretation of the coefficient is the difference in logged house price quantile 
among future participants and non-participants. The coefficient for the 0.5th quantile is 
difference in the median house price among future RainWise participants and houses that 
will not participate in percentage terms (approximately). The regressions control for year 
fixed effects but no other covariates. The quantiles range from 0.05 to 0.95 in increments of 
0.05.
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i Beginning in the 1930s and continuing through the 1970s, the Home Owners’ Loan Corporation categorized the 
desirability of neighborhoods for loans and investment using race. Their least desirable category was outlined on 
maps in red and often had higher concentrations of Black residents. 

 
ii GSI was formalized as a method of managing CSOs in 2019 with the Water Infrastructure Improvement 

Act, which requires the Environmental Protection Agency (EPA) to promote the use of GSI (H.R.7279). 
 

iii See the EPA’s work and definition of environmental justice at https://www.epa.gov/environmentaljustice. 
 

iv More information on the program is available at https://700milliongallons.org/. 
 

v The summary of  the  c on sen t  decree  i s  ava i lab le  a t  https://www.epa.gov/enforcement/seattle-washington-and-king-county-
washington-settlement. 

 
vi This program is formalized in the Stormwater Code and run by the Seattle Department Construction and Inspections. 
The  details  of the regulations are available  at http://www.seattle.gov/sdci/codes/codes-we-enforce-(a-z)/stormwater-
code. More details on the King County requirements are available at 
https://kingcounty.gov/~/media/depts/permitting-environmental-review/dper/documents/forms/Residential-Drainage-
Review-Requirements.ashx.  
   

 
vii Seattle is within King County so even though all eligible RainWise basins are in Seattle, King County and 

SPU share the responsibility of funding and operating RainWise since runoff reductions will count towards each 
utility’s consent decree. 

 
viii As part of a public records request we asked for any formal decision criteria for how eligible basins were 

selected, and none were provided. 
 

ix See the raingarden eligibility requirements at https://700milliongallons.org/wp-content/uploads/2020/08/What-
determines-rain-garden-eligibility.pdf.  

x The documentation for the RET was made available through a public records requests and is available from 
the authors. 

 
xi Data are available at 

https://kingcounty.gov/independent/forecasting/King%20County20Economic2020Indicators/Household20Income.aspx  
 

xii In general RainWise data have PINs, but public GSI and mandatory private GSI have spatial coordinates 
but no PIN. We dropped 15 RainWise observations that we were unable to merge either spatially or with 
administrative records. 

 
xiii Assessed values can be affected by petitions, are updated at different times, and do not disclose the method- 

ology. 
 

xiv Tree canopy data is not available in King County outside of Seattle. 
 

xv Although we only use eligible properties in the participation model we show the summary statistics for a l l  three 
samples to better understand distributional implications of eligibility.  All eligible properties are in Seattle, but the 
program is partly funded by property owners in King County outside of the Seattle city limits. 

 
xvi The correlation of these variables is shown in Figure A4 in the Appendix. 

 
xvii The neighbor GSI variables are the number of RainWise installations, mandatory private GSI, public GSI, 

and parks within 1 mile from parcel i at year t. 
 

xviii We use the natural log transformation for both home values and median income in the participation models. 
 

xix To conserve space only the primary distributional variables are presented in Figure A5, but we include all 
variables presented in Table A3 in the Aalen’s regression model. 
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