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ABSTRACT. Estimating discrete choices under uncertainty typically rely on assumptions of 

the Expected Utility Theory. We build on the dynamic choice modeling literature by using a non-linear 

case-based reasoning approach that is based on cognitive processes and forms expectations by 

comparing the similarity between past problems and the current problem faced by a decision maker. This 

study provides a proof of concept of a behavioral model of angler location choice applied to recreational 

fishers’ location choice behavior in Connecticut. We find the case-based decision model does well in 

explaining the observed data and provides value in explaining dynamic value of attributes. (JEL 

C25;Q22;Q50) 

 

Appendix materials can be accessed online at:  

https://uwpress.wisc.edu/journals/pdfs/LE-99-1-Guilfoos-app.pdf  
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1 Introduction 

 

The random utility model (RUM) is the workhorse of discrete choice analysis in economics, 

which includes but is not limited to location choice modeling, travel cost analysis, choice experiments, 

and contingent valuation. RUM spans both revealed choice and stated choice research across most 

disciplines of economics to explain choice behavior. The explosion in modeling discrete choice behavior 

and estimating demand from these choices can be traced to the early 1970s, when luminaries such as 

Daniel McFadden pioneered work in discrete choice modeling and economic choice (McFadden, 1974; 

Manski, 1977; McFadden, 2001). The stochastic utility models underlying this literature, in practice, 

usually makes strong assumptions about rationality. When applying these approaches to empirical data, 

the general practice is to choose models that exhibit high levels of rationality and are linear combinations 

of explanatory factors, or a reduced form specification.1 These assumptions are justified in the sense that 

estimation is easy to compute, the model is consistent with neo-classical theory, and the model is easy 

to interpret. However, the functional form of the utility and primitives of decision making, is ideally 

based on the assumptions about how people make a choice (Koppelman, 1981). The present work builds 

on the dynamic choice framework by introducing a method of estimation based on case-based decision 

theory (CBDT) to environmental and resource economics. 

Expected Utility Theory (EUT)  posits that decision makers conceptualize states of the world 

and assign probabilities to each of those states, updating with Bayes rule. CBDT takes a different 

approach where knowledge or beliefs of all states of the world are not necessary. Instead, the primitives 

of CBDT are the ‘problems’, ‘actions’, and ‘results’, which as a triplet are a ‘case’ in CBDT. Information 

in CBDT enters through the memory of the decision maker which includes past cases. Problems in 

CBDT are the choice situations that describe the choice being made along with any attributes to the 

decision problem. CBDT posits that decision makers use the psychological concept of similarity 

between past problems in memory and the current decision problem to maximize utility. CBDT sums 

over cases to find the utility of different actions for a given problem, while EUT sums over all state-

spaces for each action. 

In many decision problems for environmental and natural resource economics, the primitives 

of EUT may be unnatural to define and difficult to formulate. Take for example a recreational outing to 

a beach. In EUT, the states of the world include all possible experiences from the trip to a particular 

beach is a daunting task to define. Further, asking a beach goer what their priors were over each possible 

outcome and relative states of the world is likely to be unsuccessful. This does not seem like a plausible 

cognitive description of the decision problem. Further, memory may be defined as the entire cross-

sectional choice set which may not be appropriate. CBDT instead supposes that decision-makers under 

uncertainty ask how similar the trip is to a reference trip, perhaps to other past trips to beaches. When 
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faced with a new decision, the decision-maker’s memory is used to form expectations about the utility 

of a trip to the beach. We can think about many environmental and natural resource decision problems 

that are similar in complexity to the above example; location choice for recreation (surfing, birders, 

hiking, fishing) or extractive natural resource decisions (irrigation, forestry, fisheries). For example, we 

can use the CBDT framework to model crop and irrigation technology choice decisions for farmers 

where the potential states of the world are difficult to define, yet history and experience may be available 

to guide the researcher on defining memory. 

In our paper, recreational fishers face a location problem of where to go fishing. The EUT 

relevant state space would need to define all possible distributions of different species of fish and 

probabilities of catching the target species. This includes all theoretical possibilities as EUT anglers are 

never surprised by the existence of a state space, rather anglers update priors about the likelihood of 

them occurring. Then anglers would need to assign utility outcomes to each of these state spaces, a 

considerable task. CBDT simplifies this task considerably and is a more natural way to formulate the 

decision problem for an angler. Namely, they draw on experiences to form expectations and use 

similarity between decision ‘problems’ to assess the utility of each location under the conditions of the 

current decision ‘problem’. 

There are several studies that rely on non-linear utility models to explain behavior in discrete 

choice literature (Kim et al., 2014; Martínez-Espiñeira, 2006). When choice data exhibit repeated 

choices studies have introduced state-dependence into the controls (Smith, 2005; Cantillo et al., 2007; 

Abbott and Wilen, 2010). State dependence is a specific way in which serial correlation is addressed 

(Heckman, 1981). Like state dependence, CBDT is a dynamic choice framework that maps how past 

choices influence current choice behavior. The difference between conventional methods used in state 

dependence literature and our study is that CBDT is context-specific and based on the agent’s experience 

of past trips, the attributes of those trips, the trips’ success, and how similar those trips are to the current 

choice problem. 

There are required assumptions when modeling discrete choice with linear additive 

parameters. First, individual choice is informed by all observations; in other words, an individual’s 

memory is complete with all observable instances of the data. This implicitly relies on the idea that 

state-spaces are known and calculated by individuals. Second, individuals use rule-based reasoning to 

make decisions based on the functional form of utility, namely that it is linear and additive in 

components. The individuals use rules that average the effect of dependent variables on the choice 

variable across observations. Case-based reasoning posits that individuals take cases from memory and 

compare the similarity of past problems to the current decision problem to form an expected utility of 

choices. In other words, individuals reason through analogies to make choices rather than reason through 

rules. Based on this notion, individuals would expect similar problems to have similar outcomes (Gilboa 
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and Schmeidler, 1995). There is support in psychology and economics for case-based reasoning that 

individuals weigh their own experiences more than other available information which suggests that there 

are apparent bounds of what is contained in an individual’s memory when making decisions, in short, a 

reasonable constraint on human choice (Shepard, 1987; Pape and Kurtz, 2013; Bleichrodt et al., 2017). 

Individuals may use rule-based reasoning or case-based reasoning or a combination of the two in 

practice. Only careful inspection of observed choice can illuminate the decision process. 

The implications for employing the case-based reasoning framework on discrete choice 

questions are twofold. First, if the data generating process that creates choice data is different from the 

model used, we will be more likely to suffer in out-of-sample prediction. A model consistent with what 

we know about choice behavior should be better at predicting out-of-sample which are of particular 

importance to policy (i.e., climate change scenarios, hypothetical scenarios, location closures).2 Second, 

using the wrong model for inference on choices will impair our estimates for welfare. Therefore, a model 

that incorporates what we know about the psychology of choice and explains the data well is likely to 

provide a better measure of demand. Other researchers also make the argument that welfare analysis 

should be based on our understanding of the behavioral processes that generate the data (Cerigioni, 

2021; Rubinstein and Salant, 2012; Manzini and Mariotti, 2014). 

Several studies in the economics literature show that CBDT performs well in explaining 

empirical data. Ossadnik et al. (2013) conduct a repeated choice experiment where individuals’ choice 

behavior was assessed based on an urn ball experiment using Maximin Decision Criteria, Reinforcement 

Learning Model, and CBDT. The results revealed that CBDT explains the experimental data better than 

a maximin decision criteria model or a reinforcement learning model. Guilfoos and Pape (2016) and 

Guilfoos and Pape (2020) finds that CBDT explains experimental game theory behavior well in 

prisoner’s dilemma and mixed strategy equilibria games. Both Pape and Kurtz (2013) and Kinjo and 

Sugawara (2016) show that CBDT explains data well with respect to human classification learning and 

viewing decisions of Japanese TV dramas, respectively. Case-based decision theory predicts decisions 

well in several empirical settings. However, this theory has never been applied in non-market valuation 

studies or location choice modeling, and welfare implications have not yet been explored. Further, 

CBDT has not been adapted to empirical applications in dynamic choice environments, except for 

Guilfoos and Pape (2020) and Pape and Kurtz (2013). Our paper builds on the estimation methods 

presented in Guilfoos and Pape (2020) and applies CBDT to a dynamic empirical application on 

observed choices outside a laboratory setting. 

Location choice behavior is important for environmental policy and management. It reveals 

preferences for attributes and can illuminate important policy choices for non-market goods. We apply 

CBDT to a recreational fishers location choice data set. Recreational fishers, unlike commercial, have 

varying motivations such as spending time with friends and family, catching a trophy fish, deriving 
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aesthetic pleasure, catching a target species, and so on (Rubio et al., 2014). Research on choice behavior 

of recreational fishers is essential as this activity contributes a value addition of 38.7 billion dollars, 

generating more than 472 thousand employment opportunities and provides 24.3 billion dollars as 

annual income in the United States as of the year 2016.3 As a result, the conservation of fishing locations 

and maintaining an adequate level of fish populations to sustain recreational fishing is an essential 

economic incentive to the nation. Fisheries management strives to conserve fishing areas, protect marine 

life, avoid fish stock depletion, and administers policy changes that may cause unintended 

consequences, especially in the behavior and distribution of recreational anglers (Pauly et al., 2005). 

However, choices made by fishers are dependent on numerous factors, some of which are uncertain and 

unobservable to the researcher (Holland, 2008). Therefore, a clear understanding of site selection 

behavior enables us to design effective regulatory measures and understand how fishermen respond to 

management policies (Cinti et al., 2010). 

This work provides a proof of concept for CBDT in location choice modeling. We find that 

CBDT and the state dependence model both appear to fit the recreational fishing location choice data 

well. In sample goodness of fit favors the state dependence model and out of sample goodness if fit 

favors CBDT. Sometimes the goodness of fit is close between the two models. When investigating 

model differences by species, it appears that heterogeneity of choice behavior between species may be 

responsible for the good performance of the state dependence model using in sample goodness of fit. 

The importance of goodness of fit is in identifying likely patterns of behavior and understanding the 

data generating process.  

Using simulations we show that there may be significant deviations of measures of willingness 

to pay when applying a linear model if the underlying data generating process is consistent with CBDT. 

A linear model consistently overstates willingness to pay for the catch of a preferred species, which is 

statistically different from the ‘true’ parameters and can be overstated by up to 35%.  Further, a CBDT 

model is consistent with the psychological mechanisms for choice, which may be why the data may 

appear to fit the CBDT framework slightly better. It is our contention that models which can match 

known mechanisms for choice may provide a better basis to make inferences about welfare, which 

appears to be true in other behavioral economic models, such as loss aversion or present biased choices 

(Thaler, 2016) .  

 

2 Rule-based and Case-based Reasoning in Location Choice 

 

To clarify the differences between rule-based reasoning and case-based reasoning (reasoning 

by analogy), we provide an example of both. Suppose an individual is interested in purchasing a boat 

and is deciding which boat satisfies her demand for certain attributes (size, color, style) while 
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constrained by a budget. A rule-based decision would reason "I want to buy a boat and boats cost $1,000 

per additional foot of length", while reasoning by analogy would reason "my friend’s boat cost $20,000 

and I want to buy a boat of the same size and characteristics, so it should cost a similar amount". The 

predictions of rule-based reasoning and case-based reasoning could be similar, but the processes differ 

in the decision making mechanisms. In location choice modeling, reasoning by analogy is intuitive, as 

agents choose to visit locations similar to past locations that generated high levels of utility. The same 

reasoning might present itself negatively as well; "we had a horrible time at Beach A, and Beach Z is 

very similar to Beach A, so we will not visit Beach Z." Case-based reasoning can also fit into the random 

utility model, though CBDT suggests a specific functional form and draws its inference through the 

concept of memory (Guilfoos and Pape, 2020). CBDT is a close relative of reinforcement learning, 

which draws on similar psychological support (Gilboa et al., 2007; Shepard, 1987; Guilfoos and Pape, 

2016, 2020). 

CBDT was introduced in Gilboa and Schmeidler (1995). This decision theory captures the 

thinking process of a decision maker based on the similarity of circumstances. The CBDT framework 

could be useful for exploring environmental and natural resource economics issues because it provides 

a framework to estimate welfare for new hypothetical location choices without complete knowledge and 

assignment of probabilities for all state-spaces. For example, a new public park, the restoration of fishing 

ground, or other conservation initiatives can change the set of possible locations in the choice set. This 

theory hypothesizes that decision makers rely on stored memory, experience, and reasoning by analogy 

to choose whether to visit locations and how they derive value from that choice. 

How a resource user chooses a location to visit is difficult to know and construct (Hess et al., 

2018). For example, fishers seem to qualitatively assess alternative locations to visit based on intuition 

and experience. Ethnographic interviews conducted by Holland (2008) show that fishers’ choice 

behavior often does not conform to the assumptions of expected utility. Some of the anecdotal findings 

include that safe and consistent returns were preferred over maximum fishing catch. However, as with 

other location choice modeling, fishing location research has relied on LA models. The paper by 

Bockstael and Opaluch (1983) was one of the first to incorporate uncertainty in fisher’s choice model 

via RUM. Mistiaen and Strand (2000) use a mixed multinomial logistic model to understand the short-

run heterogeneous risk preferences in fishing choice behavior. Similarly, several other studies also use 

LA models to examine fisher behavior when it comes to location choice preferences (Ran et al., 2011; 

Mistiaen and Strand, 2000; Smith, 2005). 

The recreational fishing literature focuses on collecting all attributes that could potentially 

influence behavior such as cost to travel to the fishing site, fishing quality, water quality, congestion in 

the site, expected catch, and site history (Train, 1998; Rubio et al., 2014; Morey et al., 1991). We 

propose to characterize the same attributes through similarity from past experiences to generate 

by
 g

ue
st

 o
n 

A
pr

il 
19

, 2
02

4.
 C

op
yr

ig
ht

 2
02

2
D

ow
nl

oa
de

d 
fr

om
 



6 

expectations and form utility, much like reinforcement learning, where individuals choose locations 

based on expectations formed through case-based reasoning. 

3 Methods 

 

This section describes the methods to estimate both the LA and CBDT models using a random 

utility model framework. We discuss the model components, the stochastic choice rule, and how to 

apply the models to the data set. 

3.1 Random Utility Theory 

In random utility theory, an individual decision maker faced with a finite choice set K assigns 

a utility value to each choice (U1,U2,...,UK) depending on a vector of individual-specific, time-specific, 

and alternative specific characteristics denoted as X. The decision rule behind this framework 

hypothesizes that the decision maker would choose an alternative j ∈ K where the utility derived from j 

is the maximum possible utility from the given choice set (McFadden, 2001; McFadden and Train, 

2000). The probability of choosing the alternative j is given in equation 1: 

 Pr(𝑗|𝐾, 𝑋) : Pr(𝑈𝑗 > 𝑈𝑖)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 𝑗 ∈ 𝐾 (1) 

The random utility function Uj is the utility attained by the decision maker given the vector of attributes 

influencing her decision. This utility is a combination of both deterministic as well as stochastic 

components, 𝑈𝑗 ((𝑋; 𝜃), 𝜖𝑗). The deterministic component contains the observed vector of attributes, X, 

and θ is the parameter vector. 𝜖𝑗, is the random component of utility. The unobserved portion is assumed 

to be independently and identically distributed (iid). Utility is then expressed in equation 2: 

       𝑈𝑛𝑗 = 𝑓(𝑋, 𝛽) + 𝜖𝑛𝑗 ,      (2) 

where Unj is the utility function for the nth individual choosing the alternative j. 

The functional form of utility could take many forms. The linear additive version takes 

information about the decision maker and site characteristics and uses equation 3 to model location 

choice. We refer to this model as the LA RUM. 

 

 𝑓(𝑋, 𝛽) = ∑ 𝛽𝑖𝑋𝑖
𝐼
𝑖=1 .        (3) 
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3.2 Case-based Decision Theory 

In this section, we demonstrate how CBDT characterizes the deterministic part of the RUM. 

CBDT is a behavioral model of decision making that we incorporate into the random utility modeling 

approach. This theory measures utility by incorporating the similarity between the current scenario and 

scenarios in memory, which are called cases. According to CBDT, every individual has a memory (M), 

which stores a set of cases (C). Each case is a combination of a set of problems (P), a set of actions (A) 

taken to resolve this problem, and the subsequent set of outcomes or results (R) obtained from applying 

the action to the problem. CBDT assumes that individuals refer to their memory of cases and form 

expectations based on the weighted similarity of past cases and the current problem. A similarity 

function weighs the similarity between the current problem (p) and past problems (q). Past problems, q, 

need not be drawn from the decision maker’s own experience. These memories could be drawn from 

outside observations, or they could be hypothetical constructs. The expected utility is a combination of 

the cases in memory and the results of those cases, weighed by the similarity function. Another 

component considered in case-based decision theory is the aspiration level (H). Aspiration denotes the 

satisficing amount of utility the individual pursues. A combination of the above components, that is, the 

similarity function, utility function, and aspiration level, provides the case-based utility of an individual 

(Gilboa and Schmeidler, 1995). 

In the recreational fisheries context, M is the set of fishing trips stored in the fisher’s memory. 

The problem, P, is defined as each fishing trip’s attributes, such as weather conditions, travel cost, or 

day of the week of the trip. The action, A, is the chosen fishing location of the fisher. The result, R, is a 

binary indicator variable equal to one when the fisher catches his target species and equal to zero 

otherwise.4 The aspiration level, H, for the fisher is the satisficing level of utility derived from his fishing 

trip. According to this model, the weighted similarity index between past (q) and current problems (p) 

of the fisherman and results of past trips will form their expectations of utility. 

The psychology literature provides surprisingly specific guidance on the form of a similarity 

function and measures of distance between information in the definition of the problem. Shepard (1987) 

argues that a specific psychological function that generalizes distances in conditions that can be 

invariant to monotonic transformations is desirable. He further argues that this generalization is 

consistent with a general law of how any similarity between stimuli can be experienced by individuals. 

His work suggests an exponential decay similarity function with Euclidean distance as an approximation 

of the general invariant monotonic function that generalizes between stimuli. Shepard further argues 

that these measures have an evolutionary basis and are found to be consistent with the learning data. 

While any similarity function that is decreasing in distance measures in practice could be applied to the 

data, we choose one that psychology has suggested emerges from the generalized learning responses 

from stimuli. This function establishes the resemblance between past problems and the decision maker’s 
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current problem. As per CBDT, each fisherman will have a set of cases stored in her memory, which 

she will refer to, when making current decisions. The similarity function is given in equation 4. 

 𝑠(𝑤, 𝑝, 𝑞) =
1

exp (𝑑(𝑤,𝑝,𝑞))
 , (4) 

 

where w is the estimated weight between a vector of information from the current case (p) and 

past case (q) and where d(.) denotes a distance metric between elements of p and q. The greater the 

resemblance between information in the two cases, the greater the estimated weight given to past case. 

The consequent case-based utility (CBU) function is given in equation 5. 

 

  𝐶𝐵𝑈𝑖𝑗𝑞 = ∑ 𝑠(𝑤, 𝑝, 𝑞)[𝑈(𝑟) − 𝐻]𝑖𝑗𝑞∈𝑀        (5) 

 

In the above equation, the case-based utility for individual i for location choice j, includes the 

similarity function s(w,p,q), the utility function, U(r), which denotes the utility derived from the result, 

r, and H which is the Aspiration level. We have constrained the aspiration level to be zero because 

identification is confounded when estimating the initial attractions to locations and the aspiration level 

jointly.5 M denotes the level of memory the individual has that includes all the cases involved with the 

chosen alternative j. The case-based utility is then measured by taking the summation of the similarity 

function, weighted by the difference between U(r) and H (Guilfoos and Pape, 2016). The maximum 

likelihood estimation procedure estimates the most probable parameters to obtain the observed data. 

3.2.1 Distance Measures 

The approximation of similarity and distance measures that Shepard (1987) suggests is the 

functional form we have used in equations 4 and 6, which uses a Euclidean distance measure (Shepard, 

1987; Nosofsky, 1992). The suggested approximation also works with a “city-block” distance function 

(Shepard, 1964, 1987; Aulet and Lourenco, 2021), which we also estimate. The distance function that 

follows the euclidean distance metric (𝑑(𝑤, 𝑝, 𝑞)𝐸) is given equation 6. 

 

 𝑑(𝑤, 𝑝, 𝑞)𝐸 = √∑ 𝑤𝑣(𝑝𝑣 − 𝑞𝑣)2𝑛
𝑣=1  (6) 

 

In the above equation, v denotes the explanatory variables used in the model. This similarity 

functional form was used in Pape and Kurtz (2013) to describe data from a human classification learning 

problem experiment. Guilfoos and Pape (2020) also used the same functional form in mixed strategy 

equilibria games and found that it performed well in describing the data from those experiments. The 

other measure of distance used in psychology is called the city-block distance, given in equation 7. 

 𝑑(𝑤, 𝑝, 𝑞)𝐶 = ∑ 𝑤𝑣|(𝑝𝑣 − 𝑞𝑣)|𝑛
𝑣=1  (7) 
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3.3 State Dependence Model 

The conceptual understanding of state dependence as per Heckman (1981) is the influence of 

an individual’s past experience on their current decisions. The typical method to incorporate state 

dependence is to linearly add proxy variables that capture individual past experience to the utility 

function. In order to evaluate the general performance of CBDT, we estimate a model that is often used 

in the state dependence literature. Similar to Guadagni and Little (1983) and Keane (1997), variables 

that are serially correlated measures of individual past choices are included as controls in this model. 

Apart from CBDT, we estimate two other models for comparison. The first model uses the 

cross-sectional data to make predictions with a linear additive combination of controls (LA). The second 

model includes the additional state dependence variables, the weighted average of past location choices 

nested in the LA model. 

 𝑥𝑖𝑗𝑡  =  𝛼 ∗  𝑥𝑖𝑗𝑡−1  +  (1 −  𝛼) ∗ 𝑦𝑖𝑗𝑡−1  (8) 

Equation 8 defines the state dependence variable 𝑥𝑖𝑗𝑡−1. The state dependence variable is a 

dynamic measure of past location choices, where the variable α determines the weight on past choices. 

The variable y equals one for a visit to site j at time t for individual i and zero otherwise. The parameter 

α acts like a discount factor on past choices, similar to a recency parameter in CBDT, which measures 

the distance between current choice and past choices in the choice problem. The state dependent variable 

requires an initial value, which we set equal to zero. The combination of the LA model with all the 

controls including the state dependent variables, henceforth referred to as the state dependence model 

(SD), is similar to models from Smith (2005) and Smith and Wilen (2002) in the fisheries literature. 

The choice of alpha could be optimized by the researcher, adding another degree of freedom 

for model choice. In Appendix A, we show a range of alphas and the resulting model goodness of fit 

measures. We note that the state-dependence model fit does not vary much based on the choice of α. 

The performance of the state-dependence model is slightly affected by α when using out-of-sample 

measures. We use α = 0.50 in the main text as it performs well in the out-of-sample tests. Our findings 

are robust to different values of α. 

3.4 Stochastic Choice Rule 

A common stochastic choice rule applied in discrete choice modeling literature is the logit 

response model. The multinomial logistic model is used when the choice set faced by an individual has 

multiple discrete alternatives (Sellar et al., 1986; Parsons et al., 1999). For instance, recreational fishers 

have multiple fishing sites in their choice set. The choice probability that a decision maker chooses one 

of the alternatives, j ∈ K is given in equation 9. 
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 𝑃𝑛𝑗 =
exp (𝜆,𝑈𝑛𝑗(𝛽,𝑥𝑛𝑗))

∑ exp (𝜆,𝑈𝑛𝑖(𝛽,𝑥𝑛𝑖))𝐾
𝑖=1

, (9) 

where Unj(β,xnj) is the utility of alternative j for individual n, which is a linear additive function 

of attributes (x) in the LA model and a summation of utility weighted similarity functions for CBDT. 

The sensitivity parameter, λ, which is assumed to be one in LA models, are estimated in CBDT. λ is 

important to the estimation of learning models on laboratory data of discrete choice and is considered 

in Guilfoos and Pape (2020). As λ approaches zero the data appear to be completely random to the 

model predictions and as it approaches the model appears to be more deterministic in fitting the data. 

The above choice rule implies that the probability of a fisherman choosing site j from choice set K, is 

the exponential of the utility from site j divided by the sum of all of the exponentiated utilities (Ben-

Akiva et al., 1985; McFadden, 1974). 

An important critique against the multinomial logit choice model is the assumption of 

Independence of Irrelevant Alternatives (IIA). This assumption implies that the utility from one 

alternative is solely influenced by individual-specific characteristics which are constant across 

alternatives (Train, 1998). To counter this limitation and to account for other considerations such as 

heterogeneity and taste variations, other models such as nested logit, latent class, and mixed multinomial 

logit are used. Such models rely on location specific variation that involves additional conditions to the 

multinomial choice probabilities (McFadden, 2001; Ben-Akiva et al., 1997). In this paper, we apply the 

original multinomial logit choice process to compare the linear additive rule-based model with the case-

based reasoning model, CBDT. It is important to note that both models would suffer equally with such 

limitations. 

4 Welfare Analysis with CBDT 

 

In this section, we discuss welfare within the CBDT framework. Welfare estimation is 

essential for policy evaluation; therefore, we need to understand how CBDT choice affects our estimates 

of willingness to pay for goods. An important assumption when measuring welfare in discrete choice 

models is the interpretation of the cost coefficient as the marginal utility from income. This monetary 

value is then used to compute the fishers’ willingness to pay estimates for a change in site attribute, 

holding all else constant (McConnell, 1995; Hanemann, 1983). 

The theory of welfare valuation is unaffected by CBDT’s assumption of a functional form of 

utility, but there are practical considerations to confront when implementing CBDT. For instance, based 

on the assumptions we make regarding memory, we need to construct a history of experiences that 
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resemble a representative individual from the data to understand how the payoffs from choices are 

incorporated into the choice set. 

The conditional indirect case-based utility function (CBV) as defined in equation 10. 

 𝐶𝐵𝑈𝑖𝑗 = 𝐶𝐵𝑉𝑖(𝑦𝑖 − 𝑄𝑗 , 𝑥𝑖𝑗) + 𝜖 (10) 

where y denotes the income for individual i; Qj being the attribute for choice j and x denotes 

other explanatory variables affecting utility. Equation 11, demonstrates how a change in policy that 

alters the site attribute from Q0 to Q1 can be measured: 

 

 𝐶𝑆𝑖𝑗 =
ln[∑ 𝑒

𝐶𝐵𝑉(𝑄𝑗
1)𝐽

𝑗=1 ]−ln [∑ 𝑒
𝐶𝐵𝑉(𝑄𝑗

0)𝐽
𝑗=1 ]

𝜕𝐶𝐵𝑉𝑖𝑗

𝜕𝑦

 (11) 

 

To compute the value of a change of compensating surplus (CS) in site attributes we need to make 

assumptions about all site attributes. Similar to the linear additive form of utility models when variables 

are held at their means in the numerator of equation 11, in CBDT, we need to make assumptions on the 

values of variables in the similarity function. When valuing a change in result, like catching a target 

species of fish, the similarity function is held at some assumed value. On the other hand, when valuing 

a change in the attribute, Q, in the similarity function, we must consider if the attribute affects the result, 

(r), as well as the similarity function. The indirect case-based utility as a function of a particular Q is 

given in equation 12. 

 

 𝐶𝐵𝑉(𝑄𝑗
1) =

1

𝑒𝑥𝑝√𝑤
𝑄𝑗

1(𝑝
𝑄𝑗

1−𝑞
𝑄𝐴)

𝑢(𝑟|𝑄𝑗
1) (12) 

 

In CBV, we make assumptions about the past problems in memory, qQ, either by taking the average 

distribution of past attributes (QA), or by another measure of a representative past. Other possible choices 

for welfare calculations are calculating welfare for specific populations of memory, or to calculate the 

distribution of welfare for the sample population. For instance, it may be preferable to assume a specific 

memory distribution if attempting to obtain the welfare gain or loss for a specific sub-population or type 

of angler. Assumptions are also required regarding how 𝑄𝑗
1  affects the result, r. To measure how 

attributes affect results we need to establish a functional form, as provided in equation 13, that measures 

the effect of the attributes on the results. 

 𝑟(𝑋) = 𝑓(𝛽𝑣 , 𝑋𝑣) + 𝜖 (13) 
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We then use the predictions from equation 13 to construct the average result, 𝑟(𝑄𝑗
1), conditional on 

attribute 𝑄𝑗
1 for a particular site j and estimate the location choice model using CBDT as outlined in 

section 3.2. Lastly, we need a measure of the marginal utility of income, y to interpret the effect of a 

change in attribute on utility in dollar terms. We hypothesize that the marginal utility of income could 

be rule-based or case-based. If rule-based, we would typically recover a constant marginal utility of 

income. However, if case-based, the derivative of CBU with respect to cost (or measure of income) 

would potentially affect both the result, r, and the comparison to past cases through the estimated 

weights in the similarity function. The estimates from the location choice model and the predictions 

from equation 13 are used as inputs into equation 12. 

5 Data 

 

We use data from Connecticut recreational fishers to test the empirical fit of each model. The 

data used in this study was obtained from the Volunteer Angler Survey Program (VAS) provided by the 

Connecticut Department of Energy and Environmental Protection (DEEP).6 Fishing trip and catch 

information are recorded in survey logbooks by anglers voluntarily. The survey logbooks are provided 

to each angler participant, and anglers are encouraged to send back in the completed logbooks via mail. 

Weather data is obtained from the NOAA’s (National Oceanic and Atmospheric Administration) 

National Centers for Environmental Information (NCEI)7 and joined to the trip data by day of the trip. 

After accounting for missing values, the VAS data received has a total of 3,182 day trip records 

taken by 51 survey participants from the year 2013 to 2016. A concern with location choice data is the 

potential for a selection problem of who goes fishing or which anglers choose to report trips. This would 

need to incorporate a first-stage estimate to model the selection process, and using a CBDT framework 

to model the data generating process of site selection as a second-stage. Since the selection of our data 

is based on voluntary participation it may very well have a selection bias which may interact with a 

travel cost coefficient; yet the model comparisons of the second-stage are still valid comparisons as all 

models in our paper use the same sample. 

The area assigned to recreational anglers in Connecticut is appropriated into six area codes. 

Each three-digit area code denotes an area of the Long Island Sound defined by NOAA8. Figure 1 (Map 

of Long Island Sound) presents the areas used in this study as recorded in the Fishing Vessel Trip Report. 

The trip report also contains the species caught, the number of fish caught, and each catch’s weight and 

size. Observations recorded from the Long Island Sound but not noted on the map have been grouped 

into a sixth area denoted as other. The smallest unit of observation for location is the area codes used in 

our definition of location. Fishing sites may be aggregated, which could create aggregation bias (Parsons 
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and Needelman, 1992). Though all models would suffer from aggregation bias and it should not affect 

model selection criteria.  

The variables in this data set are work day, if a trip is taken on a weekday, the month and year 

of the trip, daily average wind speed, daily average temperature, daily average precipitation, angler id, 

fishing hours on trip, and trip mode (type of boat or if the shore). The variables described are used to 

derive the key variables commonly used in fisheries literature (McConnell et al., 1995; Hunt, 2005; 

Timmins and Murdock, 2007). The derived key variables of interest are site congestion, expected catch 

rate, site history, and period. The summary statistics of the same are included in Table 1. 

5.1 Expected Catch Rate 

The expected catch represents the expected payout received in terms of fish caught per unit 

effort from each site. We construct this variable based on multiple attributes of the trip. It is estimated 

using the number of anglers, fishing hours, area, trip mode, weather variables, workday, year, and 

month. This predicted measure for catch rate is estimated using a Poisson process model, an approach 

popularized by McConnell et al. (1995). Further details and estimated results of the Poisson process 

model are reported in Appendix B. 

Weather is an important aspect of recreation behavior (Chan and Wichman 2020; Dundas and 

von Haefen 2020). Weather can affect an angler’s decision to go fishing on a particular day and which 

location to visit through expected catch. In our work, we use weather as an input to expected catch. 

Aspects of weather and climate (wind speed, temperature, and precipitation) are used to define expected 

catch for an area. We define trace precipation for weather with the average daily precipitation is less 

than 0.005 inches. Weather can also shift behavior due to climate change, though we do not model all 

of these behaviors in this work. Other adaptations anglers make to adjust to climate change may include 

shifting the time of day to fish to adjust to extreme temperatures (Dundas and von Haefen 2020). 

5.2 Indexing Memory 

In case-based decision theory, each case in the decision maker’s memory, which are previous 

fishing trips in this study, is chronologically ordered and indexed using a variable we call period. This 

variable is a constructed variable which equals the accumulated number of trips an angler takes. Period 

is a measure of recency in CBDT. A relatively recent case may have a more considerable influence in 

the decision making process than an older case. To account for this, we include period in the model as 

an attribute. In the LA model this variable acts as a proxy for individual fishing experience within our 

sample size. 
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5.3 Site Congestion 

The variable site congestion refers to the number of other fishers encountered during the 

fishing trip. The effect of congestion as a site attribute is important when modeling location choice 

preferences. The standard hypothesis is that congestion initially acts as a proxy for the popularity of the 

site. However, beyond a certain degree, it is considered less desirable and acts as a disutility in the site 

choice model (Timmins and Murdock, 2007). In this study, congestion is the individual share of total 

fishing trips taken the previous year in the same month in the same location. The share of a participant 

in proportion to the number of site visitors measures the likelihood of running into others on a trip to a 

particular location. In this method, we presume that fishers formed expectations regarding the 

congestion of a site while they were making the site choice decision. Therefore, we use the fisher’s 

previous visitation experience in that site to measure congestion. The share of each individual across 

total site visitors gives us an insight into how much site space they occupy as well as the frequency of 

encountering another fisher (Schuhmann and Schwabe, 2004). A smaller individual share implies more 

congestion at the specific site. Also, considering the year before reduces the limitations of recall memory 

and the same month is used to account for the seasonal nature of this recreational activity (Kolstoe et 

al., 2018). 

The construction of site congestion is based on the anglers in our dataset which acts as a proxy 

for actual congestion. This variable therefore may contain measurement error in the variation between 

the actual measure due to anglers that did not report their day trips. 

5.4 Site History 

The familiarity of the site is another attribute that may affect its utility. Site history is a binary 

indicator for whether the chosen site was visited in the previous period by the same individual. This 

measure is a direct way to capture the incidence of repeat visitation and its importance in site selection. 

5.5 CBDT Variables 

In the CBDT model, we use the variables period, site congestion, site history, and expected 

catch rate to define the problem, (P). The result (R), or payout, is a binary indicator of whether the 

targeted species was caught on the trip. This result is a proxy for actual utility received on a trip as that 

is not observable. The set of actions (A) are the fishing area locations. 

6 Model Goodness of Fit Comparison 
 

The in-sample quantitative fit of LA, CBDT, and SD models are compared using the Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC). When comparing the 
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information criteria for the estimated results, a relatively smaller AIC or BIC value means that the 

model has better goodness of fit (Atkinson, 1981). 

Out-of-sample predictions for all models are also conducted. For model selection, the out-of-

sample procedure is preferred since the in-sample fit can be more easily manipulated by the addition of 

controls, which may mask how well the underlying model is performing. We use a method of roll-

forward samples to estimate out-of-sample fit as measured by log-likelihood. In this approach, a 

percentage of decision maker’s choice data, which comprises of cases ordered chronologically, is used 

to predict the remaining hold-out sample. We conducted a rolling window selection for out-of-sample 

fit comparison using 15, 25, 50, 75, and 90 percent of choice data for all models. 

Lastly, we use a non-nested model selection test developed by Vuong (1989) to evaluate if the 

models are statistically different from each other. The Vuong test determines if the CBDT model is the 

preferred model using in-sample measures. 

7 Results 

 

First, we discuss the fit of each of the models considered. Table 2 reports the measures of 

fitness for the LA, SD, and CBDT models. Using the in-sample goodness of fit, we find that the SD 

model is the best model by all criteria. CBDT models perform similarly with either a Euclidean distance 

or city-block distance metric. Despite having thirty parameters more than CBDT, which has ten 

parameters, the BIC measure for both SD and CBDT model is similar. Therefore, the penalty for 

parameters from BIC makes the models similar in in-sample goodness of fit. Both dynamic models 

outperform the LA model, indicating that the dynamic history of behavior is important in this context. 

We find that model selection using the Vuong non-nested model selection test (Vuong, 1989) favors the 

SD model and is statistically significant at the 1% level (z-stat = 2.73). We provide the details of the LA 

model in Appendix C. 

The SD and CBDT model both fit the data well. To guard against model overfitting, we 

compared the out-of-sample goodness of fit for all models. We compare the rolling out-of-sample 

goodness of fit based on fishers’ memory. Table 3 reports the log-likelihood value for all models. CBDT, 

with both distance metrics, performs better than all other models in general, except for the 50% memory 

hold out sample. We take this as an indication that the SD model may be overfitting the data and is not 

as parsimonious as the CBDT model. Given the simpler and more intuitive model performs well in this 

task, the results suggest CBDT as a model that explains the observed data well. 

Next, we discuss the parameters from the CBDT model results. Table 4 contains the 

coefficient estimates from the CBDT model. The coefficients for "Area i" are relative initial attractions 

to the stated location areas. These parameters are similar to attractions to strategies that learning rules 
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accumulate in behavioral game theory (Guilfoos and Pape, 2020). This initial attraction also serves a 

role similar to fixed effects in a LA model. Initial attractions to locations and aspiration levels are not 

separable in estimation and therefore aspiration is left out. In columns 1 through 4 of Table 4, we 

incrementally add controls to the model of CBDT using the Euclidean distance metric.  In column 5 we 

report the CBDT model using city-block distance metric. 

The coefficients in the LA model are log odds ratios; with CBDT the coefficients are the 

weights, wv, given to that parameter in the similarity function as specified in equation 6. The weights 

from the CBDT model, if positive, indicate a degree of similarity between current and past cases. For 

instance, the estimated weight for site congestion is substantial, positive, and statistically significant. It 

indicates a high degree of similarity between the congestion level for the current and past locations. The 

weight for expected catch increases in statistical significance using the city-block distance metric. This 

means that while model goodness of fit is robust to different distance functions, the interpretation of 

individual pieces of the definition of the problem are sensitive to the functional form used to define 

distance. The estimated weight for the variable period accounts for recency. In other words, the 

similarity weight for period accounts for the temporal distance between the current choice problem and 

trips that occurred in the past. Trips further in the past are given less weight in forming expectations. 

All the parameter estimates are logical and intuitive in interpretation. To interpret the relative 

importance of each weight we must standardize them, which we do in Appendix D using the estimates 

from column 4 in Table 4.  Recency and then congestion appear to play the most important roles in the 

weight of information of the problem set.  

The results estimated until now include all fish species. We check the robustness of our results 

by analyzing each target species separately, using CBDT and the Euclidean distance metric. Table 5 

reports the estimated weights for the top four target species considered by recreational fishermen in our 

data set. The BIC model selection criteria show CBDT better fits the data than LA for all species. CBDT 

also has a better fit than the SD model for striped bass, bluefish, and black sea bass but not fluke. 

In terms of interpretation, the coefficient for expected catch shows significance for striped 

bass and fluke. On the other hand, the estimated weight for site congestion is significant, positive, and 

substantial for all target species, especially for black sea bass. This finding implies that choice location 

weighs cases in the past with similar congestion very high when constructing location preferences. This 

finding conforms to the existing literature regarding the importance of including congestion effects 

when modeling recreational choice behavior (Schuhmann and Schwabe, 2004; Bujosa et al., 2015; 

Timmins and Murdock, 2007). 

Another point of interest is that the goodness of fit seems to favor CBDT in the samples for 

different species. These results suggest that heterogeneity plays an important role in modeling decisions. 

The parameters in CBDT are significantly different and CBDT performs better by in-sample fit 
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compared to the other models. This shows the importance of heterogeneity by species. Inclusion of 

interaction terms in the model by species- or species-specific models- may be more appropriate when 

estimating location choice for anglers. 

8 Simulation of Welfare Changes 

 

We use simulated data to demonstrate the errors in estimating welfare when ignoring non-

linear aspects of dynamic choice when the data generating process is from a case-based decision maker. 

We conducted this simulation for two reasons. First, it allows us to add a measure of marginal utility of 

money, which is lacking from our recreational fishing data. Second, we can run controlled experiments 

with simulated data varying the relationships between random variables. 

The generated discrete choice data follows equation 14, where we index the current period (t) 

to reference past periods (q), in memory. Decision maker i, considers attributes, k, for two locations j = 

[1,2] with a random variable for travel cost, C.  We use specifications of travel cost data from Melstrom 

and Lupi (2013) to inform our simulated data. The site attributes (k) are expected catch rate (ECR) and 

site congestion (SC), and the index for time (period). Additionally, we assume the error term, 𝜖𝑖𝑗𝑡, to be 

independent and identically distributed and from the logistic function. Following the premise behind 

CBDT, memory is constructed on the three previous periods, after which the fourth and subsequent 

periods are forgotten. Memory in this and other empirical work (Pape and Kurtz, 2013; Guilfoos and 

Pape, 2016; Guilfoos and Pape, 2020) appears to be highly discounted. Using the assumption of only 

three periods in memory is similar to highly discounting further periods. The result (or reinforcement 

mechanism) is a binary indicator that equates to one if the fisher caught their preferred species at location 

j, referenced as catch. 

 

 𝐶𝐵𝑉𝑖𝑗𝑞 = 𝛽0 + 𝛽1 ∗ 𝐶𝑖𝑗𝑡 + ∑
𝑐𝑎𝑡𝑐ℎ

𝑒
√∑ 𝑤𝑘(𝑝𝑘𝑖𝑗𝑡−𝑞𝑘𝑖𝑗𝑞)

2
+ 𝜖𝑖𝑗𝑡 (14) 

 

Descriptive statistics for the parameters and the distributions of random variables are provided in Table 

6. Each simulation contains 1000 anglers, over 20 time periods (40,000 observations), and is repeated 

500 times. We have left aspiration levels out of our simulation since we did not estimate them in the 

empirical section. It is worth noting that if included, aspiration levels would shift welfare measures 

similar to intercept terms from a linear additive model 

In Table 6, the correlation parameter describes the level of correlation between ECR and C. 

After each simulation, we use the standard logistic model to estimate the coefficients from equation 15. 

We then use a Wald test to assess if the recovered coefficients are equal to the ‘real’ coefficients that 

generated the data. The travel cost coefficient, β1, and the coefficient on a prior catch at location j, β4, is 
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used to assess how the marginal willingness to pay for a target species is estimated. Since we assumed 

a linear additive cost structure, the ‘real’ coefficient is equal to -0.065, which is the marginal utility of 

money. While the marginal increase in the previous period catch is one over the average similarity 

function from the previous period, 0.517, we can further accumulate the value of all past catches as far 

back as an individual’s memory goes to assess the cumulative effects of catches at a particular location. 

Willingness to Pay for a site is acquired in the same manner, provided we assume a value for past catches 

or the expected value of catching the preferred species. 

 𝐶𝐵𝑉𝑖𝑗𝑞 = 𝛽0 + 𝛽1 ∗ 𝐶𝑖𝑗𝑡 + 𝛽2 ∗ 𝐸𝐶𝑅𝑖𝑗𝑡 + 𝛽3 ∗ 𝑆𝐶𝑖𝑗𝑡 + 𝛽4 ∗ 𝐶𝑎𝑡𝑐ℎ𝑖𝑗,𝑡−1 + 𝜖𝑖𝑗𝑡  (15) 

The error rate in identifying β1 is high (100%) with a p-value < 0.05, with a statistical difference in the 

real cost coefficient and the estimated cost coefficient at close to 100% of the time. The error rate in 

identifying the marginal value of a previous catch is also high (100%) with a p-value < 0.05. The mode 

and mean of point estimates for 𝛽̂1 are systematically lower than the ‘true’ parameter, which inflates the 

willingness to pay of any attribute. As the correlation between a random variable within the similarity 

function and the linear additive part of the data generating process increases, so do the issues with 

precision around the marginal utility of money and with the bias in the estimated 𝛽̂1.  

The marginal willingness to pay for a preferred species by construction is $7.96. The LA 

model retrieves between $9.36 and $10.73 with a larger bias with high correlations between random 

variables. This demonstrates a concern with the bias in welfare when the data generating process is case-

based and nonlinear in ways that a linear specification mis-specifies. 

This simulation demonstrates that in dynamic processes it is easy to mis-specify the choice 

data generating mechanism when omitting the dynamic aspect. This is of course a weak empirical test 

of the importance of case-based decision theory as many types of dynamic data generating mechanisms 

would also produce results that are different than the linear models would predict.  Future work must 

investigate which theories are consistent with the data, how to structurally estimate known behavior, 

and to construct tests of validity for the behavioral theories. 

 

9 Discussion and Limitations 

 

We find some support to recommend case-based reasoning to empirical location choice data. 

First, our results show that CBDT does a good job explaining the data using out-of-sample goodness of 

fit. CBDT does well in reproducing the choice data across different cutoffs. Replicating the data 

generating process is of particular concern for the external validity of estimates and welfare estimates 

when considering non-market valuation. 
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There are limitations to the CBDT approach. When applying models to empirical data, the 

researcher often does not know much about the choice data, such as the experiences that shaped 

preferences. Therefore, in constituting an individual’s memory using CBDT, we may leave out or 

misconstrue what is in memory or how a particular memory enters into utility. In panel data where 

repeat observations are available, there is a natural definition of the memory to draw on, the past 

experience of the decisionmaker. Our framework naturally suggests itself to panel data in which 

memory can be easily defined. Much of the work done on location choice has used surveys in the past 

and oftentimes it is not a panel of data. Yet, we imagine that other methods could be used to supplement 

survey data or cross-sectional data to define memory or history. One potential method is to join cell 

phone data that gives insight into location choice histories9. Another is to develop repeat surveys with 

more extensive histories, ratings of past trips, or particularly salient experiences. Though domain 

specific knowledge about information available to decision makers should be used in defining all 

primitives of the decision problem in empirical applications. 

Exploration is another aspect of behavior that may be relevant for angler behavior. In the 

deterministic formulation of CBDT not reaching a satisficing level of utility leads to more exploration. 

There are three elements that affect this exploration behavior in our applied setting that differ from this 

deterministic interpretation. First, we have a stochastic decision process where the exploration may 

occur randomly. Second, we have few locations in the choice set and estimate initial attractions to each, 

which may confound preferences for exploration as preferences for the areas. Third, if the coefficient 

weights in the similarity function are estimated to be negative that would lead to greater exploration or 

variety-seeking behavior in those attributes of the ‘problem’. 

One difficulty in measuring how a location choice enters into utility is the ‘result’ of a 

particular choice. In our case, we use the catch that a recreational fisher gets as their reward for fishing 

in a particular location. This is a proxy for actual utility. An ideal data set would be a panel of choice 

observations where the information set and result is known to the researcher. The lack of a ‘result’ is a 

limitation in most travel cost studies. CBDT suggests that this is a vital piece of information that would 

reinforce choices in a repeated choice setting. In our setting, recreational fishers may be motivated by 

the number of fish caught, type of fish, size of the fish caught or spending quality time with family. 

Information about the level of success attained due to a past choice made is an essential determining 

factor behind how individuals make future decisions. We feel that catching a target species is a good 

proxy measure of the result, though, in other settings, a measure of success of a choice may be difficult 

or impossible to know or omitted from survey data. 

Another limitation of this study is omitted variables. We lack information about fishers’ 

individual characteristics, such as income, education, and travel cost to the site. While we contend that 

the omitted variables do not favor one model over the other, a complete set of variables is desirable. 
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Fisheries economists have applied other models that incorporate alternative specific characteristics into 

the model. A prospective future application in CBDT accounts for unobserved heterogeneity by 

allowing parameters to vary across observations. Such a model would be comparable to a latent class or 

mixed multinomial logistic model. 

 

10 Conclusion 

 

In this study, we find that case-based decision theory explains location choice behavior well. 

We find in-sample goodness of fit favors a linear additive state dependence model, while the out-of-

sample goodness of fit favors CBDT. Using both models, or mixes of behavioral models in investigating 

empirical choice can only give us more insight into the mechanisms for choice and the importance of 

information to the decision makers. Building upon the state-dependence literature, our work confirms 

that dynamic elements in fishery location choice is extremely important. 

The compact and parsimonious CBDT model is promising for behavioral modeling of discrete 

choice data. It may explain data better and adds an element of value in the dynamic importance of 

information. Further research is needed to better match and collect data for behavioral decision making 

models such as CBDT. However, we can imagine future surveys’ future efforts may capture explicit 

measures of success of trips and aspiration values. Further work may also find when or if this type of 

behavioral modeling is needed to understand the observed choice. 

Care needs to be taken when considering discrete choice modeling and non-market valuation 

work. Using simulation data, we demonstrate the reduced form model’s potential bias, assuming that 

the data generating process is case-based. 

This work and past empirical work on CBDT (Guilfoos and Pape, 2020; Kahneman, 

2003; Gilboa et al., 2007; Bleichrodt et al., 2017; Ossadnik et al., 2013) suggest themselves to other 

applications outside of location choice modeling. Behavioral modeling is not limited to the functional 

form of choice but can involve cognition, rationalization, or other psychological aspects of choice. The 

extension of behavioral modeling, and specifically case-based reason modeling, to other choice settings, 

may provide more accurate welfare estimates if the models better match our understanding of how 

people make decisions.  
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Tables 
 

 

 

Variable Mean Std Dev Min Max 

Expected Catch Rate 12.23 11.35 0.43 112.9 

Period 100 120 1 502 

Site Congestion 0.12 0.15 0 1 

Site History (Yes = 1) 0.87 0.33 0 1 

Payout 0.69 0.46 0 1 

Table 1: Summary Statistics of Key Variables  
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 Log-Likelihood AIC BIC 

Linear Additive Model -1194.66 2439.32 2590.95 

CBDT Euclidean -928.31 1876.62 1937.28 

CBDT City-Block -922.09 1864.18 1924.84 

State Dependence Model -845.23 1748.45 1924.34 

Table 2: Comparison of Model Selection Criteria. Notes: AIC and BIC denote Akaike Information 

Criteria and Bayesian Information Criteria respectively. In the above model selection criteria, the smallest represents the 

preferred model.  
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` Percentage of Memory 

 15% 25% 50% 75% 90% 

Linear Additive Model -44247 -6543 -1643 -363 -163 

CBDT Euclidean -961 -805 -447 -207 -85 

CBDT City-Block -934 -788 -432 -209 -86 

State Dependence Model -25081 -7379 -396 -252 -123 

Table 3: Out-of-Sample Fit: Log-likelihood Comparison. Notes: In the above model selection criteria, the largest 

log-likelihood represents the preferred model. Columns represents different percentage of decisionmakers memory used to 

predict the remaining percentage of choices.  
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Fishing Area as Dependant Variable 

 Variables (1) (2) (3) (4) (5) 

 Area 1 (Initial Attraction) 2.99*** 0.56*** 0.35*** 0.29*** 0.26*** 

 (0.38) (0.09) (0.06) (0.05) (0.05) 

Area 2 (Initial Attraction) -1.23*** -0.24** -0.21** -0.18*** -0.16*** 

 (0.52) (0.11) (0.08) (0.07) (0.06) 

Area 3 (Initial Attraction) -2.54*** -0.49*** -0.41*** -0.33*** -0.30*** 

 (0.66) (0.14) (0.11) (0.09) (0.08) 

Area 4 (Initial Attraction) -3.45*** -0.67*** -0.58*** -0.48*** -0.44*** 

 (0.78) (0.16) (0.13) (0.10) (0.10) 

Area 5 (Initial Attraction) 5.02*** 0.99*** 0.64*** 0.49*** 0.45*** 

 (0.48) (0.12) (0.08) (0.06) (0.06) 

Sensitivity Parameter (λ) 41.7*** 207.9*** 267.2*** 333.2*** 358.05*** 

 (2.99) (21.82) (25.52) (31.25) (34.36) 

Expected Catch Rate 0.01*** 0.02*** 0.00* 0.00 0.03*** 

 (0.00) (0.00) (0.00) (0.00) (0.01) 

Period  0.068*** 0.065*** 0.043*** 0.20*** 

  (0.01) (0.01) (0.01) (0.02) 

Site Congestion   542.8** 412.2** 10.17*** 

   (105.8) (84.8) (1.39) 

Site History (Yes=1)    8.57*** 1.60*** 

    (1.74) (0.18) 

N 3182 3182 3182 3182 3182 

AIC 2611.85 2413.51 2041.11 1876.63 1864.18 

BIC 2654.31 2462.03 2095.69 1937.28 1924.84 

Table 4: Estimated Parameters using CBDT. Notes: The first column lists the site choices and variables used in the 

model. The respective parameter estimates for the areas, the sensitivity parameter as well as the CBDT weights estimated for 

each variable for four CBDT models is mentioned in the subsequent columns.The standard error and significance are given 

parenthesis. ***, ** and * denotes 1 percent, 5 percent and 10 percent significance level. Columns 1 through 4 use Euclidean 

distance while column 5 used City-Block distance. 
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 Striped 

Bass 

Blue 

Fish 

Fluke Sea Bass 

(ii) Model Selection Criteria (BIC)     

LA 1387 727 862 506 

SD 1053 620 724 434 

CBDT 1034 566 739 392 

 1848 1027 964 413 

(ii) Similarity Weights from CBDT     

Expected Catch Rate 0.003* 0.002 0.008*** 0.001 

Period 0.054*** 0.53*** 0.012** 0.12*** 

Site Congestion 24.14** 71.51** 256.61*** 882.9*** 

Site History 12.67** 1.27* 7.26*** 0.08 

Table 5: Model Selection & Estimated Weights for Different Target Species. Notes: The four 

columns represent the top four target species preferred by recreational fishermen in this data set.  
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Variable Description 

Period Takes values from 1 to 20. 

Travel Cost (C) = N(60,20) 

Expected Catch Rate (ECR) = N(2,0.2) 

Site Congestion (SG) = 0.5 + U[0,1] 

Catch = 1 if N(2,0.2) > ECR for sites visited. 

Correlation Parameter In number range from 0 to 0.90 

Intercept (β0) = 1 for site j=1 and =2 for site j = 2 

Travel Cost Coefficient (β1) =-0.065 

Recency Similarity Coefficient (w1) =1 

ECR Similarity Coefficient (w2) =0.20 

SG Similarity Coefficient (w3) =0.85 

Table 6: Description of Simulated Data  
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Figures 
 

 

Fig 1. Map of Long Island Sound.  Caption- This map denotes the areas in our study area, which is 

restricted to areas 141, 142, 143, 144, 145, and 146. 

 

 

Notes 
1 There is a robust literature on learning models and Markov decision models that do not use these same 

assumptions. However, these are typically not used in non-market valuation or location choice modeling. 

2 Behavioral anomalies can be important to model selection. For instance, if loss framing is important, then a 
model based on prospect theory may be appropriate and performs better out-of-sample. 

3 The website https://www.fisheries.noaa.gov/content/fisheries-economics-united-states-2016 

4 There are many possible choices for the result which we explored. These could be the number of fish caught 

or the weight of the accumulated catch. We find that the target species is a good proxy for the result in this 

setting. 

5 This point is made in Guilfoos and Pape (2020). 

6 The website http://www.ct.gov/deep/cwp/view.asp?a=2696&q=322750 provides details about VAS program 

in Connecticut. 

7 The website https://www.ncdc.noaa.gov/ provides details about the NCEI and details about how to obtain 

weather data and information. 

8 The document https://www.greateratlantic.fisheries.noaa.gov/public/nema/apsd/vtr_inst.pdf is the Fishing 

Vessel Trip Report Reporting Instructions for the Great Atlantic Region provided by NOAA. It provides 

details about the areas appropriated into grid codes in the New England region. 

9 Safegraph or similar data companies could be used to mine data on visitations and potential representative 
memories for defining the information of the problem. We thank an anonymous reviewer for this suggestion. by
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