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Abstract: Property value models are used to examine how utility-scale, ground-mount solar 
farms impact nearby agricultural land values. Results indicate that solar farms do not have direct 
positive or negative spillover effects on nearby agricultural land values. However, results also 
suggest that solar farm construction may indirectly affect agricultural land values by signaling 
the land’s suitability for future solar development. Specifically, results indicate that proximity of 
agricultural land to electric transmission lines may be positively valued after a solar farm is 
constructed nearby. 
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1. Introduction 

In just over a decade, solar photovoltaic electricity generation in the United States 

increased 100-fold from 1.2 billion kilowatt hours generated to 114.7 billion kilowatt hours.1  

This high growth is expected to continue as states implement policies that encourage the use of 

renewables and as the cost of solar generation continues to fall. As of 2022, North Carolina (NC) 

ranked third in the nation in overall installed solar capacity, behind California and Texas.2 The 

total installed ground-mount solar capacity in NC grew from under 10 megawatts (MW) in 2009 

to over 5,000 MW by 2020.3  Ground-mount, utility-scale, solar systems (hereafter referred to as 

“solar farms”) are the primary component of solar capacity in NC, which contrasts with other 

leading states such as California, Texas, Arizona and New Jersey where residential solar power 

systems (i.e., roof-top solar panels) are a sizeable portion of the installed solar capacity. 

Solar farms are generally placed in rural areas due to their relatively large footprint. For 

example, the average 5 MW farm in NC occupies approximately 30 acres, exclusive of any 

buffers or setbacks. The rapid expansion of solar farms in NC and other states has let to conflict 

as stakeholders in rural counties raise concerns about the loss of farmland to solar development, 

as well as the potential effects of solar installations on the productivity of the land once the farm 

is converted back to agricultural service at the end of the solar farm’s life (NC Sustainable 

Energy Association (NCSEA), 2017).4  In urban and suburban areas, the siting of solar farms has 

been subject to local resistance, mainly due to perceived negative visual effects from solar 

installations on surrounding property values. In NC, concerns about negative spillover effects 

have resulted in local governments either imposing moratoriums on solar farm development or 

completely banning solar farm development.5  
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It is well understood that some land uses can negatively affect neighboring property 

values.  Two recent evaluations indicate that solar farms negatively affect nearby residential 

property values (Abashidze, 2019, Gaur and Lang, 2020). 6  However, we are unaware of 

research that explores how agricultural land values could be negatively impacted by a nearby 

solar farm.  Solar farms could have negative spillover effects in agricultural land markets if a 

solar farm negatively impacts the productivity of nearby land or if aesthetic concerns negatively 

impact the demand for agricultural parcels (Ma and Swinton, 2011).  On the other hand, solar 

farms can be a lucrative land-use choice for property owners in rural areas. Typical lease 

agreements for solar development in NC guarantee landowners’ income greater than $500 per 

acre for a period of 20 years, which contrasts with average rental rates of farmland in agricultural 

production of $27 to $102 per-acre, per-year (NCSEA, 2017). Data suggest that solar farms are 

clustered across space in NC and the same solar developer tends to install solar systems in close 

proximity to each other. Thus, solar development on one parcel may signal interest in the area 

and the potential for increased land rents, which could be capitalized into land values.  This 

effect has been demonstrated in other contexts.  For example, Haan and Simmler (2018) find that 

the potential for increased wind farm development significantly increased agricultural land prices 

in Germany (see also Kirwan, 2009).     

We empirically estimate the impacts of utility-scale solar development on nearby 

agricultural land values using hedonic property value models.7  A comprehensive database of 

georeferenced agricultural land sales obtained from Zillow Research is linked to a georeferenced 

census of solar farm installations in NC.8,9  North Carolina provides an ideal setting to explore 

this question given its rich agricultural landscape, numerous solar farms (>450), and the close 

proximity of solar farms to productive agricultural land.10   
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To disentangle the potential positive spillover effects of solar development (i.e., option 

values) from potential negative spillover effects such as impacts on nearby land productivity or 

visual disamenities, we take advantage of geospatial data on electric transmission infrastructure. 

Proximity to electric infrastructure is necessary for solar farm siting, and so it is hypothesized 

that proximity of a parcel to transmissions lines after a solar farm is built could be positively 

capitalized into land values if solar development nearby signals to markets the potential for 

higher land rents.  Proximity to electric infrastructure is not highly collinear with proximity to a 

solar development, and so we are able to disentangle solar development option values from solar 

development visual or other disamenities. 

Results indicate that utility-scale solar farms have no direct positive or negative spillover 

effects on nearby agricultural land values. However, results also suggest that solar farm 

construction may indirectly affect agricultural land values by creating a signal effect of the land’s 

suitability for future solar development. Specifically, proximity of agricultural land to electric 

transmission lines is positively valued only after a solar farm is constructed near the agricultural 

parcel.  Although not the focus of this paper, this latter finding is of note since siting of 

transmission lines also faces significant opposition (Eto, 2016) and our results suggest one 

instance where proximity to transmission infrastructure may result in pecuniary benefits for 

landowners. 

 

2. Background 

Solar energy capacity in NC grew more than 600-fold in the decade following 2009.   

This remarkable growth can be attributed to several influences including NC’s renewable energy 

mandating that required electric utilities to produce 12.5 percent of their electricity from 
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renewable energy sources by 2021 coupled with generous state and federal financial incentives.  

From 2006 to 2015, NC also offered a 35 percent state tax credit to solar developers on the cost 

of each renewable energy project constructed (capped at $2.5 million per project), and federal 

investment-tax credits increased from 10 percent to 30 percent between 2006 and 2019.11 In 

addition, NC implemented requirements for “power purchase agreements” (PPAs) that were 

generous relative to other states. PPAs mandate that utilities purchase electricity generated by 

qualifying renewable sources at a fixed price for up to 15 years, reducing price risk for solar 

developers dramatically.  NC allowed PPAs for projects up to 5MW, while most states limit 

qualifying renewable sources to one-megawatt or less (NC Clean Energy Technology Center, 

2017).  In addition to generous state and federal incentives, solar panel prices fell by more than 

70 percent between 2009 and 2015 (Platzer, 2015).   

As of July 2017, there were 451 utility-scale ground-mount solar farms with over one 

MW electric power capacity installed in NC. Total installed capacity of these 451 farms is 2,900 

MW (see Figure 1). To put the scale of these solar installations into context, they occupy 14,864 

acres or 0.31 percent of potential cropland in the state. Solar power is expected to expand further 

and account for five percent of electricity generation in NC by 2030 and will require the use of 

0.57 percent of available cropland (NC Clean Energy Technology Center and NC State 

University, 2019). 

[Insert Figure 1 here] 

A solar farm’s siting process is a complex procedure that can take up to two years and 

often depends on the scale and location of the project (Kikuma, Rublev, and Tan, 2018). The 

solar developer must first determine the lease terms with the landowner and obtain an 

interconnection agreement with an electric utility that includes a PPA specifying the prices paid 
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for generation over a period of time.  The solar developer must also work with local government 

ordinances and zoning rules, which often have been revised in consideration of solar growth in 

the region. Solar ordinances typically include setback requirements that vary by zoning district 

and are usually more restrictive for residential areas. These ordinances also have standards on the 

height of solar energy systems, vegetative buffers that could mitigate visual impacts of solar 

farms, and include decommissioning requirements.  Large solar farms are also often required to 

obtain special use permits that require quasi-judicial hearings, along with the standard 

construction building and electrical permits, a stormwater permit, and in some instances, an 

aviation notification. Solar ordinances are heterogeneous across counties and are becoming more 

stringent over time.12 

Along with existing solar regulations, proximity to the current electricity infrastructure is 

an important consideration for solar farm development (Kikuma, Rublev, and Tan, 2018).  Solar 

developers must build and pay for new transmission lines to connect each solar farm to existing 

high-voltage transmission lines. The construction cost of a new transmission line is estimated to 

vary from $390,000 per mile for a 138 kV single circuit line (Public Service Commission of 

Wisconsin, 2011) to $1,343,800 for a 345 kV single circuit line (Western Electricity 

Coordinating Council, 2014). As such, solar developers prefer siting solar farms as close as 

feasible to existing high-voltage transmission lines rather than building costly new infrastructure 

(Brawner et al., 2017 and Kikuma, Rublev, and Tan, 2018).  

Other factors that affect solar farm siting processes include land use/land cover 

(typically land classified as agricultural, vacant, wild, forest, and horticulture are suitable for 

solar development), slope (typically less than 10 degrees) and aspect (South, south-west, or 

south-east facing). Parcels located in floodplains, wetlands, and/or protected areas are not 
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considered suitable for solar development (Kikuma, Rublev, and Tan, 2018). We explicitly 

control for these factors in our empirical strategy. 

3. Hypotheses and Data 

The expected externality effects of utility-scale solar farms on neighboring agricultural 

land values follow from a standard hedonic pricing model (Rosen, 1974) as applied to 

agricultural land markets (Miranowski and Hammes, 1984, Palmquist, 1989, Petrie and Taylor, 

2007, Ma and Swinton, 2012, Bishop et al., 2020).  In the context of agricultural land markets, 

the value of land characteristics are derived from their direct or indirect contribution to the net 

present value of future rents (profits).  For example, the marginal value of additional levels of 

soil quality would be positive since improved soil quality is expected to increase profits directly 

through increased crop yields and indirectly through reduced production costs (e.g., reduced 

fertilizer or irrigation costs).   

Expectations for the marginal value of proximity to solar farms or transmission lines are 

not as clear-cut as they are for soil quality.  While proximity of an agricultural parcel to either a 

solar farm or a transmission line is not expected to affect land prices through agricultural 

production processes, there could be changes in aesthetic views from the land that might be 

disvalued by farmers (Ma and Swinton, 2011 and 2012).  However, proximity to a solar farm 

may also suggest to buyers that the area is of interest to solar farm developers. This could 

positively influence prices through an option value to lease the land for future solar development 

(see Haan and Simmler, 2018, for evidence of this type of effect in the context of wind farms in 

Germany). Similarly, because cost-minimizing solar developers prefer to locate solar farms as 

close to transmission lines as feasible, it is hypothesized that proximity to the electricity 

infrastructure increases the land’s option value for solar development.   
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We can combine the above insights to hypothesize a set of empirical relationships 

(Appendix A contains a formal treatment).  Consider a parcel of land (parcel “X”) that is 

converted to a solar farm in time T.  We expect that proximity to parcel X prior to time T will 

have no effect on agricultural land sales prices.  A significant effect of proximity to the future 

site of a solar farm would indicate selection effects that would bias our estimates.  We might see 

selection effects if land that is chosen for solar development has systematically positive or 

negative spillover effects on neighboring agricultural land.  While it is difficult to imagine what 

these spillover effects might be, we empirically test for the possibility. 

The relationship between sales prices and proximity to parcel X after time T (after the 

solar farm is built) is ambiguous. If aesthetics surrounding agricultural land are capitalized into 

sales prices, and solar farms are considered visually unappealing, we would expect land closer to 

solar farms to sell for a discount.  However, at the same time, solar farm development signals the 

potential for future solar development on the parcel, which implies a positive external effect.   

Lastly, consider the relationship between transmission lines and agricultural land values.  

Colwell and Sanders (2017) indicate that transmission lines have substantial negative impacts on 

agricultural land which have direct easements (i.e., for which the transmission line easement 

crosses part of the land) and several studies reveal negative impacts of nearby transmission lines 

on residential property values (e.g., Elliott and Wadley, 2002, and Tatos, Glick, and Lunt, 2016).  

We are unaware of hedonic property value evidence that explores how transmission lines impact 

nearby farmland values.  Absent of any solar development in a region, we hypothesize that 

transmissions lines would have no effect on nearby agricultural land values or possibly a 

negative effect due to visual externalities.  However, after solar development has occurred near 
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an agricultural parcel, proximity to transmission infrastructure could be positively valued for the 

reasons stated above.   

  

Data 

Three main data sources are used in the empirical analysis.  Zillow Research provided 

geospatially referenced confidential property transactions data that contain transaction prices for 

agricultural land from 2007-2019, the NC Clean Energy Technology Center provided data on 

solar farm locations and characteristics, and proprietary GIS on transmission infrastructure in NC 

was obtained from S&P Global Platts.13   

The solar farm data include locations of 451 utility-scale ground-mount solar installations 

in NC that generate at least 1 MW of electric power. By using ArcGIS and satellite imagery in 

Google Earth and Google Maps, polygons that cover the physical outline of the solar farm panels 

were created for 428 of the 451 utility-scale solar farms. The remaining 23 solar farms were not 

yet visible in the latest aerial photography. Based on the GIS-constructed data, a 1 MW solar 

farm occupies 5.4 acres on average, while a 5 MW solar farm occupies 27.7 acres on average 

(see Appendix Table A1). These are lower bound estimates of the average land required since 

these polygons cover only the actual solar panels and do not include the additional land utilized 

to meet the setback and screening regulation requirements.14  

In addition, data include information about each solar farm’s operation start date as well 

as their respective capacities, which are summarized in Panel A, Table 1. The first three utility-

scale solar farms were built in 2009 and the number of solar farms increased quickly afterwards 

(see also Figure 1). The size of solar farm installations also increased over time and reached an 

average size of 12.6 MW by 2017 (Panel A, Table 1). Many solar farms were built (completed) 
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in 2015, the year when the NC tax credit program expired. Total installed capacity across 451 

solar farms reached 2,895 MW as of August 2017, with the average solar farm generating about 

5.4 MW.  

To explore solar farm locations relative to the electricity infrastructure, the distance 

between each solar farm and the nearest transmission line is measured using ArcGIS and is 

summarized in Panel B, Table 1.  The average distance between solar farms and transmission 

lines is less than one mile and although not reported in Table 1, approximately 90 percent of 

solar farms are built within two miles of the nearest transmission line. The maximum distance 

between any solar farm in the sample and a transmission line is 9.9 miles.  

[Insert Table 1 here] 

Table 2 reports summary statistics for characteristics of the land upon which solar farms 

are built. Land characteristics were obtained by overlaying solar farm boundaries with the 2006 

National Land Cover Data (NLCD) layer, the year just prior to the first solar farm being built.15 

As indicated in Table 2, the average coverage for land that was later converted to a solar farm 

was 75 percent grass and 20 percent forested. The high percent of grass is not surprising given 

solar farms are concentrated in the rural counties of eastern NC as shown in Figure 2. 

[Insert Table 2 here] 

[Insert Figure 2 here] 

Transactions data include information on agricultural land sales, sales prices, transaction 

dates, latitude and longitude of the property, acreage, and the number of buildings present. The 

sample is restricted to sales that are located within a 5-mile radius from the nearest solar farm 

because it is not expected that solar farms externalities would be discernable beyond that point.16 

The final sample is restricted to sales greater than 30 acres because, as reported in the previous 
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section, more than 70 percent of solar farms are approximately 5 MW or larger in capacity and 

require no less than 30 acres on average. In addition, agricultural land larger than 30 acres is 

generally considered production-scale farmland, which is the focus of this research. As a 

robustness check, models are presented that include sales greater than 10 acres. 

After examining the data, 202 sales located in western NC are dropped from the sample 

because land prices in this mountainous region of the state are likely to be determined by factors 

outside of agriculture such as tourism or residential development (Blake, 2013, see also Capozza 

and Hesley, 1989 and 1990, and Nickerson and Zhang, 2014, for a discussion of the role of urban 

development or its potential on US farmland values). Land classified as “vacant” are included in 

the analysis because land classification is coded differently across counties. For example, some 

predominantly agricultural counties (e.g., Nash and Wilson counties) record no sales in 

agriculture, although visual inspection shows transacted land that is clearly in agricultural 

production. Vacant land not included in the analysis are those classified as institutional, marsh, 

swamp, unusable land, conservation, or under construction (nine observations are dropped due to 

this restriction).  

The data are trimmed of unusually low transaction prices because these may not represent 

arm’s length transactions (e.g., transfers between family members or heirs), or are not suitable 

for agricultural production or solar development (e.g., marsh or swamp land). The data are also 

trimmed of unusually high transaction prices because they may represent land slated for 

residential or commercial development. While there is no clear evidence of what constitutes a 

minimum or maximum price per acre for land expected to stay in agricultural production, Zhang, 

Lence, and Kuethe (2021) rely on agricultural land sales professionals to determine a price range 

of $300 to $20,000 per acre for Iowa farmland.  Similarly, we consulted a real estate appraisal 
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expert in NC who suggested that farmland sales prices typically range between $1,000 and 

$10,000 per-acre in NC. 17  Thus, our main analysis uses a sample of sales between $1,000 and 

$10,000 per acre, and in robustness analyses we expand the sample to sales between $300 and 

$20,000 per acre.  

The sample used in our main analysis consists of 1,676 land sales within five miles of 

299 solar farms in 60 counties between 2007 and 2019. Table 3 reports summary statistics of the 

variables used in the analysis. The average price per acre of agricultural land is $3,343 (adjusted 

to 2019 using the consumer price index). The average size of a parcel sold is 82 acres, and ranges 

from 30 acres to over 1,300 acres.18  Although not reported in Table 3, approximately 80 percent 

of sales are smaller than 100 acres.  Appendix Figure A1 shows the distribution of agricultural 

land sales included in the final sample relative to solar farms. 

[Insert Table 3 here] 

Location characteristics for each sale were created using the Euclidean distance between 

the latitude and longitude of a sale to the boundary of the nearest solar farm that has already been 

constructed at the time of sale or the closest one that is yet to be built. As shown in Table 3, the 

average distance of a parcel in our sample to the nearest solar farm is 3.1 miles (recall, parcels 

must be within five miles of a current or future solar farm to be in the sample). Other location 

characteristics include distance to the nearest transmission line, city boundary, bodies of water, 

primary and secondary roads, airports, and recreational areas such as parks. The average distance 

to the nearest transmission line is 1.84 miles (see Table 3). Near zero, or zero distance implies 

that the land is adjacent to the characteristic, contains the characteristics, or is contained by the 

characteristic (e.g., distance to a city boundary equals zero if the land is located inside the city 

boundary). 
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The data are further augmented by adding soil quality and land characteristics.  Parcels 

are spatially matched with soil quality data obtained from the US Department of Agriculture's 

Natural Resources Conservation Service (https://www.nrcs.usda.gov/, last accessed June 2022). 

Land characteristics are created by spatially matching the latitude and longitude of each 

agricultural land sale as recorded by Zillow to a parcel boundary map obtained from NC 

OneMap (https://www.nconemap.gov/pages/parcels, last accessed June 2022). The parcel 

boundaries are then combined with the NLCD layers for 2006 and 2011 to create the coverage of 

each parcel in the closest year prior to the sale.  As reported in Table 3, the agricultural parcels in 

our sample tend to be flat with high coverage of grassland (mean = 42%) and forest (mean = 

38%). Also, on average, less than ten percent of each parcel is located within a 100-year 

floodplain or classified as wetland. We note that some sales are observed to have 100 percent of 

the parcel covered by wetlands.  The reason for this could be due to the methodology used to 

create each agricultural sale’s average soil and land cover characteristics.  Our calculations 

include only the parcel that is directly linked to Zillow’s latitude/longitude marker for the sale.  

However, this may be an imprecise characterization of the entirety of the land included in the 

sale because sales can include more than one legally defined parcel, which is the case for 18 

percent of the sample.  As such, we test the robustness of results to these covariates by 

estimating models with and without soil and land characteristics.  All results for the key 

covariates discussed in Section 4 and 5 remain unchanged to inclusion/exclusion of these 

covariates and to the inclusion/exclusion of the sales that included more than one parcel. 

4. Empirical Strategy 

First consider a simple hedonic price function that only considers the direct impacts of a 

solar farm on neighboring agricultural land:  
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ln⁡(𝑝𝑟𝑖𝑐𝑒⁡𝑝𝑒𝑟⁡𝑎𝑐𝑟𝑒)𝑗𝑡𝑐𝑠 = 𝛼 + 𝛽 ∗ ln(𝑑𝑖𝑠𝑡_𝑠𝑓)𝑗𝑡𝑐𝑠⁡+⁡𝛿 ∗ 𝐴𝑓𝑡𝑒𝑟𝑗𝑡𝑐𝑠 + 𝛾 ∗ ln(𝑑𝑖𝑠𝑡_𝑠𝑓)𝑗𝑡𝑐𝑠 ∗ 𝐴𝑓𝑡𝑒𝑟𝑗𝑡𝑐𝑠  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+𝑋𝑗𝑡𝑐 ∗ 𝜃 + 𝑍𝑗𝑡𝑐 ∗ 𝜗 + 𝜇𝑠 + 𝜏𝑐𝑡 + 𝜖𝑗𝑡𝑐𝑠⁡,⁡⁡                                                    [1]  

where ln⁡(𝑝𝑟𝑖𝑐𝑒⁡𝑝𝑒𝑟⁡𝑎𝑐𝑟𝑒)𝑗𝑡𝑐𝑠 denotes the natural log of the per-acre sale price of agricultural 

parcel j that sold in year t, located in county c, and whose nearest solar farm is denoted by s. The 

term ln(𝑑𝑖𝑠𝑡_𝑠𝑓)𝑗𝑡𝑐𝑠 is the natural log of distance between agricultural parcel j and its nearest 

solar farm, s, existing or to be constructed during the sample period. The binary variable 

𝐴𝑓𝑡𝑒𝑟𝑗𝑡𝑐𝑠 equals one if parcel j is sold after the nearest solar farm is built (i.e. year sold > year 

built). The interaction term, ln⁡(𝑑𝑖𝑠𝑡_⁡𝑠𝑓) ∗ 𝐴𝑓𝑡𝑒𝑟, captures any externalities associated with solar 

farms which are capitalized into property values. The terms 𝑋𝑗𝑡𝑐 and 𝑍𝑗𝑡𝑐 are vectors of land and 

location characteristics, respectively, that were presented in Table 3. The term 𝜇𝑠 is a solar farm 

spatial fixed effect that captures any time-invariant, common unmeasured characteristics for all 

agricultural land sales whose nearest solar farm is s. County-by-year fixed effects are denoted by 

𝜏𝑐𝑡, which captures any differential change in land values across counties over time that are not 

attributed to changes in land characteristics.  Thus, our model coefficients are identified by the 

variation in agricultural parcels that occur within a five-mile radius of a particular solar farm 

(and within a specific county in a specific year).19 Finally, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃⁡and⁡𝜗⁡are coefficients to 

be estimated and 𝜖𝑗𝑡𝑐𝑠 is the error term, which is clustered at the solar farm level.20 The 

coefficient of interest is 𝛾, which indicates whether landowners value/disvalue being in close 

proximity to a solar farm after its construction.  

The model in equation [1] can be expanded to measure the potential option values that 

may affect sales prices post-construction of a solar farm by including proximity of agricultural 

sales to transmission lines: 
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ln(𝑝𝑟𝑖𝑐𝑒⁡𝑝𝑒𝑟⁡𝑎𝑐𝑟𝑒)⁡𝑗𝑡𝑐𝑠 = 𝛼 + 𝛽 ∗ ln(𝑑𝑖𝑠𝑡_𝑠𝑓)𝑗𝑡𝑐𝑠 + ⁡⁡𝛿 ∗ ln(𝑑𝑖𝑠𝑡_𝑡𝑙)𝑗𝑡𝑐 + ⁡𝜎 ∗ 𝐴𝑓𝑡𝑒𝑟𝑗𝑡𝑐𝑠 ⁡⁡⁡+

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+⁡𝛾 ∗ ln(𝑑𝑖𝑠𝑡_𝑠𝑓)𝑗𝑡𝑐𝑠 ⁡∗ 𝐴𝑓𝑡𝑒𝑟𝑗𝑡𝑐𝑠 + ⁡𝜑 ∗ ln(𝑑𝑖𝑠𝑡_𝑡𝑙)𝑗𝑡𝑐 ∗ 𝐴𝑓𝑡𝑒𝑟𝑗𝑡𝑐𝑠 +

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+⁡𝑋𝑗𝑡𝑐 ∗ 𝜃 + 𝑍𝑗𝑡𝑐 ∗ 𝜗 + 𝜇𝑠 + 𝜏𝑡𝑐 + 𝜖𝑗𝑡𝑐𝑠⁡,                                         [2]  

where ln(𝑑𝑖𝑠𝑡_𝑡𝑙)𝑗𝑡𝑐 is the natural log of distance from agricultural parcel j that sold in year t in 

county c to the nearest transmission line. All other variables are as defined in equation [1]. The 

coefficient 𝜑 indicates whether landowners value being in close proximity to a transmission line 

after a solar farm is built in the area. The expectation is that once a solar farm is built nearby, 

landowners will recognize the option value associated with solar farm development and this 

value will be capitalized into sale prices for parcels located near electricity infrastructure (i.e., we 

expect 𝜑 ≤0). The assumption underlying the specification in equation [2] is that that the 

transmission infrastructure is planned and built independently of where future solar farms might 

be located. High-voltage transmission infrastructure in eastern NC has largely been in place prior 

to construction of the first solar farm and new lines can take up to 10 years to build, which is 

longer than our sample period.  Nonetheless, we note that violation of our assumption that 

transmission lines are not endogenously placed in response to solar farm construction would bias 

the coefficient estimate for ln(𝑑𝑖𝑠𝑡_𝑡𝑙) ∗ 𝐴𝑓𝑡𝑒𝑟. 

5. Results 

Table 4 reports key coefficient estimates for equation [2] estimated with the sample 

including all parcels with 30 or more acres. Columns (1) presents coefficient estimates based on 

the most restricted sample that includes only sales between $1,000 to $7,000 per acre, and 

column (4) presents the least restrictive sample that includes all sales between $300 and $10,000 

per acre.  All models include location and land characteristics described in Table 3 and also 

include county-by-year and solar-farm fixed effects.21  Robust standard errors clustered at solar 
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farm level are reported in parentheses.  Appendix Table A3 reports results where standard errors 

are clustered at the county level or using Conley standard errors. 

As indicated in Table 4, the coefficient estimates for ln(dist_sf) are small, highly 

insignificant, and inconsistently signed across models, which suggests that prior to development 

of a solar farm, there are no systematic features of the land where a future solar farm will be built 

that affects neighboring property values.  Furthermore, the coefficient estimates for ln(dist_sf) x 

After are also inconsistently signed across models and are never statistically significant, 

indicating that proximity to a solar farm after it is built has no statistically significant effect on 

agricultural land values.   

[Insert Table 4 here] 

Coefficient estimates for distance to a transmission line prior to a solar farm being built 

(dist_tl) suggest that transmission lines are potentially a disamenity for agricultural land buyers. 

The coefficient is always positive, but only statistically significant in models including only 

parcels that sold for $1,000 or more per acre, suggesting a negative effect for prime farmland.  

We explore this result further to determine if it is driven by the potential interference with land 

productivity created by easements when transmission lines cross private agricultural land as 

suggested by Colwell and Sanders (2017). While our data do not allow us to distinguish precisely 

when a meaningful easement is present (e.g., when the easement cuts across a field versus an 

area that would not have been used for crops anyway), we explore this issue by creating a 

variable, Easement, that is equal to one when a transmission line crosses the boundary of the 

parcel included in the sale and equal to zero otherwise.  There are 149 parcels (7.5%) in the 

largest sample of 1,986 sales for which transmission lines cross the boundary of the parcel 
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associated with the sale.  Appendix Table A4 reports results that include this variable and are 

suggestive that the negative externality of transmission lines are primarily driven by easements.22  

Interestingly, the models also indicate that agricultural lands fully recover any negative 

values experienced as a result of being near a transmission line after a solar farm is constructed 

nearby.  Specifically, ln(dist_tl) x After is always negative, statistically significant, and greater in 

magnitude than the coefficient for ln(dist_tl).  Wald tests indicate that the sum {ln(dist_tl) + 

ln(dist_tl) x After} is less than zero for one model and not statistically different than zero for the 

remaining models.  In fact, across all samples and model variations tested, there is never an 

instance in which proximity to transmission lines is estimated to be a negative externality after a 

solar farm is constructed within five miles of the parcels in question.  Specifically, the direction 

of the effect is always positive, but rarely statistically significant. 23 

To put these results in perspective, consider a parcel that sells for the mean per-acre price 

of $3,343 (2019 dollars) and which is located the mean distance from a transmission line (1.84 

miles). Results from Table 4, column (3) suggests a statistically significant positive effect of 

proximity to a transmission line after a solar farm is constructed (Wald test p-value is less than 

0.10).  This model suggests that after a nearby solar farm is constructed, a parcel would sell for 

$136 more per acre (4.1% of the mean sales price) if it was located 0.84 miles from a 

transmission line as compared to 1.84 miles.  We find this estimate to be within reason given that 

locating a solar farm one-mile closer to high-voltage transmission infrastructure can reduce a 

developer’s upfront costs by over $1 million.24 

We explore the sensitivity of our results to the parcels included in the models.  Appendix 

Table A5 presents key coefficients for models which include agricultural land sales over 10 

acres.  While land under 30 acres is generally not considered prime agricultural land, we 
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nonetheless see qualitatively similar results as presented in Table 4. Namely, proximity to a solar 

farm has no impact on land values, and after a solar farm is constructed, proximity of a parcel to 

transmission lines is more highly valued.  We note however that the coefficient magnitudes for 

proximity to a transmission line are smaller than in Table 4, and the coefficients lose statistical 

significance in the two most restricted samples. This attenuation of the coefficients might be 

expected if there are transactions costs associated with aggregating smaller parcels to create a 

footprint large enough for the solar farm.25 

Table 5 presents models that explore the sensitivity of our results to a variety of sample 

and specification choices.  The models follow the sample and specification for model (2) in 

Table 4, except where specifically noted.  Model (1), (2) and (3) in Table 5 trim the sample in 

various ways to exclude transactions that may not be for production agriculture (i.e., the land is 

purchased to be developed as commercial or residential), while models (4) and (5) consider the 

potential influence of particularly large parcels (>1,000 acres) and particularly large solar farms 

(>5 MW).26  Model (6) and (7) presented in Panel B expand the sample to include parcels within 

seven miles of a solar farm and whose sales prices range from $300 to $20,000 per acre, 

respectively.  Models (8), (9) and (10) explore sensitivity to specification choice.  Model (8) 

excludes transmission line proximity from the model and model (9) excludes land cover 

characteristics that are likely to suffer from measurement error as discussed earlier.  Finally, 

model (10) recodes the variable After to be equal to one in the year prior to a solar farm being 

completed, and each year thereafter (see equation [1] for the definition of After), thus allowing 

the construction phase of a solar farm to also impact surrounding land values.  

Across models in Table 5, it is apparent that proximity to a solar farm does not have a 

statistically significant effect on nearby agricultural land values.  Overall, the results with respect 
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to proximity to a transmission line are largely consistent with the results reported in Table 4.  

Namely, if transmission lines are found to have negative spillover effects, the construction of a 

nearby solar farm eliminates this negative influence. 

[Insert Table 5 here] 

Although not reported for succinctness, each model presented in Table 5 is estimated on 

samples that match Table 4, columns 1, 3 and 4, and results remain unchanged.  Also, we 

estimate log-linear models duplicating the models presented in Table 4 and results remain 

unchanged: proximity to a solar farm, before or after its construction, is never statistically 

significant, and proximity to a transmission line is positively valued after construction of a 

nearby solar farm and is statistically significant at the 10% level in two of the four models.  

Finally, we estimate models in which linear measures of distance to a solar farm or transmission 

line is replaced with distance categories.  We create five categories that capture proximity of a 

parcel to a solar farm or transmission line: (adjacent, 0.5], (0.5-1.0], (1.0-1.5], (1.5-2.0], and >2.0 

miles.  Models again support our main conclusions that proximity to a solar farm does not affect 

nearby agricultural land values, but proximity to a transmission line (closer than two miles) is 

positively valued after a solar farm is built nearby. 

 
6. Conclusions 

The fast-paced growth of ground-level, utility-scale solar installations in some regions of 

the U.S. have led to conflict within communities about land-use choices, especially in rural areas 

where some stakeholders have expressed concerns about the loss of farmland and the potential 

negative impacts of solar farms on neighboring properties.  We provide quantitative evidence for 

these debates by examining whether solar farm construction impacts neighboring land values.  If 
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there are negative (or positive) effects of solar farms on neighbors, we should see those values 

reflected in agricultural land markets.   

Agricultural land sales surrounding 451 solar farms in North Carolina are examined and 

across many samples and empirical specifications, we find no direct negative or positive 

spillover effect of a solar farm construction on nearby agricultural land values. Although we find 

no direct effects of solar farms on nearby agricultural land values, we do find evidence that 

suggests construction of a solar farm may create a positive option-value for landowners that is 

capitalized into land prices.  Specifically, after construction of a nearby solar farm, we find that 

agricultural land that is also located near transmission infrastructure could increase in value.  

This latter result is also of note given the difficulty in siting transmission lines.  Our results 

suggest one instance where proximity to transmission infrastructure may result in pecuniary 

benefits for landowners. 

Although our results consistently indicate that solar farms do not directly impact nearby 

agricultural property values, we also note that our results only apply within the context of our 

study.  We cannot inform debates around longer-term effects of solar development on 

agricultural land values (longer than 10 years), or effects that could occur if greater penetration 

of solar development is observed as compared to our sample.  For example, concerns have been 

expressed that as solar displaces traditional agricultural production in a region, local supply 

chains could suffer and lead to a negative cycle in which more farmers exit the industry and 

supply chains further weaken.  This type of general equilibrium effect would require 

significantly more solar penetration than already observed in North Carolina and thus we cannot 

empirically evaluate these concerns. 
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Table 1. Solar farm summary statistics.a 
Panel A. Solar farm summary statistics by year of construction 

Year 

# of Facilities 
Built Each 

Year 

Total New 
Capacity 

(MW) 
Mean New Capacity 

(MW) 
Std. 
Dev. 

Min 
Capacity  

Max 
Capacity 

2009 3 9.5 3.2 3.6 1 7.3 
2010 5 14.4 2.9 4.0 1 10 
2011 9 21.8 2.4 1.9 1 5 
2012 29 125.1 4.3 3.7 1 20 
2013 49 231.2 4.7 3.4 1 20 
2014 86 402.8 4.7 2.9 1 20 
2015 145 968.3 6.7 9.6 1.5 80 
2016 89 668.9 7.5 12.0 1.2 78.5 
2017 36 452.9 12.6 18.2 1.9 78.7 
Total 451 2,895 5.4 6.6 1.0 80.0 

Panel B. Distance (miles) between a solar farm and the nearest  
transmission line by year of construction 

Year 
# of Facilities Built  

Each Year 
Mean Distance to a 
Transmission Line SD Minb Max 

2009 3 0.17 0.21 0.01 0.47 
2010 5 0.40 0.22 0.04 0.74 
2011 9 0.91 1.22 0.01 3.89 
2012 29 0.79 1.11 0 4.45 
2013 49 0.91 1.33 0 5.54 
2014 86 0.94 1.22 0 5.28 
2015 145 0.87 1.31 0 9.90 
2016 89 0.61 0.64 0 2.41 
2017 36 0.74 1.03 0 3.26 
Total 451 0.70 0.92 0 9.90 

a The last solar farm in the sample was built in August 2017. 
b A minimum distance to the nearest transmission line of zero indicates that the solar farm boundaries are adjacent to 
the nearest transmission line. 
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Table 2. Characteristics of land upon which solar farms are eventually built.a  
Land Characteristics in 2006 Mean Std. Dev. Min Max 
Water (%) <0.01 0.0029 0 0.06 
Open Space development (%)b 3.54 9.34 0 89.40 
Low Intensity development (%)c 0.62 3.23 0 36.80 
Medium Intensity development (%)d 0.17 2.30 0 46.59 
High Intensity development (%) <0.01 0.041 0 0.84 
Barren (%) 0.17 1.33 0 18.35 
Forest (%) 19.93 31.21 0 100 
Grass (%) 74.74 32.45 0 100 
Wetland (%)e 0.82 3.50 0 35.99 

a The NLCD layer for 2006 is used to construct land characteristics for parcels prior to the installation of a 
solar farm.  
b Open space development is a mixture of constructed materials and vegetation, where impervious surface 
accounts for less than 20 percent of total cover. 
c Low intensity development contains up to 49 percent impervious surface. Five parcels had more than 10 
percent of low intensity development prior to solar farm construction. These observations also had some 
parking lot coverage prior to solar farm development. 
d Medium intensity development is defined by the NLCD as a mix of constructed materials and vegetation that 
contains up to 79 percent impervious surface. There is only one observation with more than six percent of 
medium intensity development prior to solar farm construction and visual inspection from Google Earth 2006 
imagery indicates this parcel had a large parking lot on the land prior to development.  
e The NLCD defines wetlands as areas where more than 20 percent of vegetative cover is either forest or 
shrubland and is periodically soaked with water. Eight parcels had more than 10 percent wetland coverage 
prior to solar farm construction. Visual inspection from Google earth imagery did not indicate any water 
coverage on the parcels. 
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Table 3. Agricultural land sales summary statistics (N=1,676 sales).a 
  Unit Mean Std. dev. Min Max 

Transaction Informationb 
Sales Price (2019 dollars) Dollars 227,143  271,598  27,118  5,301,988  
Price per acre (2019 dollars) Dollars 3,343  1,977  1,000  9,988  
Total acres acres 82  88  30  1,394  
Buildings Number 0.06  0.25  0 2 

Location Characteristicsc 
Distance to nearest solar farm mile 3.10  1.28  0.04  5.00  
Distance to nearest transmission line mile 1.84  1.64  <0.001 11.23  
Distance to nearest river mile 0.27  0.19  <0.001 1.30  
Distance to nearest lake mile 1.61  1.41  0 9.63  
Distance to nearest primary road mile 1.12  0.95  <0.001 5.56  
Distance to nearest secondary road mile 0.18  0.19  <0.001 1.71  
Distance to nearest city boundary mile 2.50  2.16  0 13.72  
Distance to nearest recreational land mile 9.79  5.83  0 36.18  
Distance to nearest airport mile 26.63  15.24  0.53  94.81  

Soil Characteristics and Land Cover c 

Well drained binary 0.67  0.47  0 1 
Best soil binary 0.88  0.33  0 1 
Soil loss tolerance factor (T factor) Tons 4.5  1.0  1 5 
Representative slope degrees 4.8  4.1  0.7  35 
Water (% of parcel coverage) % 0.43  0.03  0 1  
Wetland (% of parcel coverage) % 9.82  0.18  0 1  
Developed (% of parcel coverage) % 7.46  0.15  0 1  
Grassland (% of parcel coverage) % 42.01  0.31  0 1  
Forest (% of parcel coverage) % 37.97  0.32  0 1  
Barren (% of parcel coverage) % 0.17  0.02  0 1  
% of parcel within 100 year flood plain % 6.16  0.17  0 1  

a  The sample upon which the summary statistics are calculated include 1,676 land sales between 2007 and 
2019 around 299 solar farms built between 2009 and 2017. 
b  Source: Zillow Research (2019), Zillow Transaction and Assessment Dataset (ZTRAX).  
c  Authors calculations based on sources for parcel boundaries (https://www.nconemap.gov/pages/parcels), 
land characteristics (https://www.mrlc.gov/), and soil quality (https://www.nrcs.usda.gov/). 
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Table 4. Select coefficient estimates for agricultural land sales over 30 acres.a 

a The dependent variable is the natural log of sales price per acre.  Agricultural land that sold between 2007 and 
2019 and which are within 5 miles of the nearest solar farm are included in the sample. All models include all spatial 
and land characteristics as described in Table 3, as well as county-by-year fixed effects and solar farm fixed effects. 
Robust standard errors clustered at solar farm level are in parentheses, and *** p<0.01, ** p<0.05, and * p<0.1. 
b Wald test is for ln (dist_tl) + ln (dist_tl) x After = 0, and the corresponding p-value is in the next row.

Sample Includes: 

 
Sale prices from  
$1,000 to $7,000  

per acre 

Sale prices from  
$1,000 to $10,000  

per acre 

Sale prices from 
 $300 to $7,000  

per acre 

Sale prices from  
$300 to $10,000 

per acre 
 (1) (2) (3) (4) 
ln (dist_sf) -0.003 0.008 -0.042 -0.022 

 (0.047) (0.051) (0.055) (0.058) 
After 0.158 0.164 -0.050 -0.065 

 (0.159) (0.182) (0.183) (0.195) 
ln (dist_sf) x After -0.007 -0.011 0.056 0.066 

 (0.069) (0.071) (0.088) (0.089) 
ln (dist_tl) 0.043* 0.044* 0.024 0.037 

 (0.023) (0.023) (0.029) (0.029) 
ln (dist_tl) x After -0.084** -0.073** -0.099* -0.099** 
 (0.036) (0.036) (0.050) (0.048) 
Adjusted R2 0.185 0.238 0.125 0.167 
Observations 1,555 1,676 1,865 1,986 
Wald testb  1.662 0.900 3.378 2.527 
P-value (0.198) (0.343) (0.067) (0.113) 
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Table 5. Robustness analysis: select coefficient estimates for agricultural land sales.a 

a  The dependent variable is the natural log of sales price per acre.  All models follow the specification and sample in 
Table 4, model (2), with variations as noted in the column header and footnotes b and c. Robust standard errors 
clustered at solar farm level are in parentheses, and *** p<0.01, ** p<0.05, and * p<0.1 
b Model (1) excludes vacant land that is classified as residential. Model (2) excludes counties coded as “urban” (see 
notes to Figure 2). Model (3) includes only sales coded as “Agricultural” by county tax assessor offices (thus, 
excluding “Vacant” land). Model (4) excludes sales larger than 1,000 acres and Model (5) includes only sales 
located around solar farms with 5MW or smaller capacity.  
c Model (6) includes parcels located seven miles of a solar farm (existing or yet to be constructed).  Model (7) 
expands the sample to include sales with prices up to $20,000 per acre. Model (8) reports coefficient estimates for 
equation [1] and thus excludes distance to a transmission line from the analysis. Model (9) excludes soil and land 
cover characteristics from the model.  Model (10) recodes After = 1 (see equation [1] for a definition) one year prior 
to a solar farm being completed and each year after. 
c Wald test for ln(dist_tl) + ln(dist_tl) x After = 0, and the corresponding p-value is in the next row.  

Panel A: Sample Robustnessb 

 
Excluding 
Residential 

Vacant 
(1) 

Excluding 
Urban 

Counties 
(2) 

Only parcels 
recorded as 
agricultural 

(3) 

Only Parcels 
<1,000 acres 

(4) 

Only Solar 
farms <5MW 

(5) 
ln (dist_sf) 0.024 -0.002 0.054 0.010 -0.017 

 (0.066) (0.055) (0.103) (0.051) (0.058) 
After 0.131 0.124 0.272 0.168 0.161 

 (0.191) (0.203) (0.287) (0.182) (0.202) 
ln (dist_sf) x After 0.013 -0.002 -0.047 -0.015 0.020 

 (0.088) (0.082) (0.144) (0.070) (0.083) 
ln (dist_tl) 0.029 0.055** 0.060* 0.044* 0.046* 

 (0.025) (0.026) (0.036) (0.023) (0.026) 
ln (dist_tl) x After -0.053 -0.077* -0.109** -0.073** -0.081** 

 (0.041) (0.043) (0.054) (0.036) (0.040) 
Adjusted R2 0.251 0.240 0.331 0.238 0.238 
Observations 1,380 1,435 597 1,674 1,444 
Wald testc 0.525 0.376 1.192 0.860 1.115 
P-value (0.469) (0.540) (0.277) (0.355) (0.292) 

Panel B: Sample and Specification Robustnessc 

 

Parcels up to 7 
miles from a 
solar farm 

(6) 

Sales prices 
from $300 to 
$20,000/acre 

(7) 

Excluding 
transmission 

lines 
(8) 

Excluding 
land 

characteristics  
(9) 

After = 1  
one-year prior 

to SF build 
(10) 

ln (dist_sf) 0.008 -0.002 0.028 0.003 0.031 
 (0.042) (0.057) (0.050) (0.051) (0.059) 
After 0.211* -0.191 0.204 0.158 0.038 
 (0.113) (0.187) (0.177) (0.186) (0.129) 
ln (dist_sf) x After -0.046 0.080 -0.044 -0.005 -0.051 
 (0.059) (0.091) (0.070) (0.070) (0.071) 
ln (dist_tl) 0.006 0.030 -- 0.042* 0.039 
 (0.019) (0.029)  (0.023) (0.026) 
ln (dist_tl) x After -0.022 -0.088* -- -0.075** -0.044 
 (0.029) (0.047)  (0.036) (0.036) 
Adjusted R2 0.212 0.238 0.234 0.241 0.235 
Observations 2,277 2,102 1,676 1,676 1,676 
Wald test  0.394 2.382  -- 1.178 0.046 
P-value (0.531) (0.124)  -- (0.279) (0.831) 
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Figure 1. Number of solar farms and cumulative installed capacity by years. 
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Figure 2. Distribution of solar farms across North Carolina, by installed MW. 
 
Notes: Counties with density that exceeds 750 people per square mile are classified as urban, counties with density 
between 250 – 750 people per square mile are sub-urban, and counties with density less than 250 people per square 
mile are defined as rural (https://www.ncruralcenter.org/about-us/). 
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FOOTNOTES 
 

 
 
 
 
1 U.S. Energy Information Administration, https://www.eia.gov/energyexplained/electricity/electricity-in-the-us-
generation-capacity-and-sales.php, last accessed June 2022. 
2 U.S. Energy Information Administration, https://www.eia.gov/todayinenergy/detail.php?id=47636, last accessed 
June 2022. 
3 U.S. Energy Information Administration, https://www.eia.gov/state/analysis.php?sid=NC#37, last accessed June 
2022. 
4 Examples of conflict between solar development and agricultural communities are seen in many states including 
Connecticut (https://ctmirror.org/2017/02/21/new-farmland-harvest-solar-energy-creating-political-sparks/), 
Maryland (https://www.baltimoresun.com/maryland/bs-md-renewable-energy-conflict-20161015-story.html), New 
Jersey (https://www.njspotlight.com/2020/08/utility-scale-solar-agricultural-land-state-clean-energy-goals-
ratepayer-costs/), North Carolina (https://www.carolinajournal.com/news-article/rural-solar-developments-pit-
neighbor-against-neighbor/), Oregon (https://www.opb.org/news/article/solar-development-farmland-oregon-ban/), 
and Virginia (https://www.npr.org/2019/03/25/706546214/a-battle-is-raging-over-the-largest-solar-farm-east-of-the-
rockies).  All sites last accessed June 2022. 
5 By 2020, moratoriums on solar development had been implemented in at least seven NC counties, and one 
township had banned solar farms within its jurisdiction.  
6 In contrast to the negative spillover of being located near a solar farm, several studies have shown that equipping a 
home with rooftop solar panels can increase the value of the home with an installation (Qiu, Wang, and Want, 2017, 
Hoen et al. 2017, Dastrup et al. 2012, Adomatis and Hoen, 2016, and Wee, 2016).  Gaur et al. (2022) conduct a 
choice experiment survey and find that land use prior to solar development is an important factor shaping 
respondents’ preferences. Specifically, respondents are willing to pay between $15 to $19 per month if a fully 
visible solar farm is constructed on brownfields or commercial lands, and need to be compensated between $13 and 
$49 per month if the solar farm is sited on farmlands or forest lands.. 
7 A related empirical question is whether land with a solar farm already installed sells for more than nearby land 
without a solar farm.  Unfortunately, our data do not allow us to explore this question as we observe only three sales 
for land after a solar farm is installed.  We note, however, that these three transactions sold for double the mean 
price-per-acre observed for our full sample of agricultural sales. 
8 Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More information on 
accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are those of the author(s) 
and do not reflect the position of Zillow Group. 
9 We thank the NC Clean Energy Technology Center at North Carolina State University for providing georeferenced 
data on ground-mount solar farms in North Carolina. 
10 In California and Arizona, most of the large, ground-level solar systems are installed in desert areas, thus 
providing less potential to examine externality effects of the solar farms on agricultural (or residential) land values. 
11 The federal investment-tax credit declined to 26 percent in 2020, 22 percent in 2021, and to ten percent thereafter. 
12 For additional details on solar farm siting processes, see the 2013 Template Solar Energy Development Ordinance 
prepared by NCSEA and NC Clean Energy Technology Center, available at https://nccleantech.ncsu.edu/wp-
content/uploads/2018/06/NC-Template-Solar-Ordinance.pdf, last accessed August 2022. 

13 Data on electric infrastructure included transmission lines and substations are proprietary and were obtained from 
S&P Global Platts (https://www.spglobal.com/platts/en/products-services/electric-power/north-american-electric-
transmission-system-map). 
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14 Kikuma, Rublev, and Tan (2018), NCSEA (2017), NCSEA and NC Department of Agriculture and Consumer 
Service (2016) also suggest similar acreage is needed for one and five MW solar farms. 
15 The NLCD is available every five years since 2001 (https://www.usgs.gov/centers/eros/science/national-land-
cover-database). 
16 We also estimate models including sales located within a 7-mile radius from the nearest solar farm. Results 
remain qualitatively unchanged and are discussed further in Section 5. 
17 We thank Rich Kirkland for his valuable insights regarding agriculture land values in NC. 
18 Appendix Table A2 reports summary statistics for the largest sample that includes sales between $300 and 
$20,000 per acre around 309 solar farms. 
19 For a discussion of spatial fixed effects in hedonic models, see Kuminoff, Parmeter, and Pope (2010). 
20 We also estimate each model with standard errors clustered at the county-level or using Conley standard errors 
(Hsiang, 2010) and report these in Appendix Table A3.  Hypothesis tests and overall conclusions remain the same. 
21 The full set of covariates are reported in Appendix Table A2, excluding the solar-farm fixed effects and the 
county-by-year fixed effects.  Briefly, coefficient estimates in Table A2 indicate that larger parcels sell for lower 
prices per acre, on average. This inverse relationship between price per acre of agricultural land and parcel size is 
consistent with the findings of Miller (2006), Ma and Swinton (2012), and Brorsen, Doye, and Neal (2015).  Results 
also indicate that parcels with greater water coverage and closer proximity to a city boundary are associated with 
higher prices per acre.  Proximity to a secondary road has a negative influence on agricultural land that is very close 
to the road (less than one-half mile), but a positive effect on prices for distances greater than one-half mile.  Other 
variables are not statistically distinguishable from zero. 
22 Note, our sales data only contains a single latitude-longitude marker per sale.  To obtain parcel boundaries, we 
map these markers to the NC OneMap GIS (see Section 3).  However, 18 percent of our sales included more than 
parcel (whose boundaries we do not have), making it difficult to determine the relationship between transmission 
lines and the entirety of the acreage purchased.  Results are nearly identical to those presented in Appendix Table 
A4 when we drop sales with one more than parcel. 
23 The coefficient estimates remain qualitatively unchanged when restricting the sample to agricultural land sales 
within five miles of only a single solar farm (Haninger, Ma and Timmins, 2017). 
24 Solar developers must build transmission lines to connect the solar farm to high-voltage transmission lines.  These 
construction costs are estimated to vary between $400,000 per mile for a 138 kV single circuit line to well over $1 
million per mile for a 345 kV single circuit line (Public Service Commission of Wisconsin, 2011, Western 
Electricity Coordinating Council, 2014).  We note that there is the possibility of transmission line “congestion” that 
could dimmish the ability to develop new solar farms in a particular location.  Our models estimate the average 
effect of the value of proximity to a transmission line, which would be inclusive of this congestion effect when 
present and understood by the market.  If market participants are uninformed, then the average value of proximity to 
transmission lines after a nearby solar farm is built (i.e., the coefficient on ln(dist_tl) x After) is inflated relative to a 
fully informed market.  See Pope (2008) for a discussion on the effects of buyer information in hedonic property 
models. 
25 Transactions costs could include negotiating and contracting with multiple landowners or removing trees and 
natural areas that may exist at parcel boundaries. An apparent preference for single-parcel installations is evidenced 
by the fact that 81 percent of solar farms in the sample are built on a single parcel (and 96 percent are constructed on 
one or two parcels).   
26 Models were also estimated including only parcels less than 200 acres and less than 80 acres (approximately the 
95th and 75th percentile in the sample, respectively).  Results remain qualitatively unchanged: solar farms do not 
affect nearby property values after their construction, except that land that is also close to transmission lines 
experiences a positive influence on price after the construction of a nearby solar farm. 
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