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ABSTRACT Estimating demand for licenses for recreational activities is complicated due to a 

lack of meaningful variation across time, space, buyer types, and license attributes, including 

price. Prior work uses discrete choice experiments (DCEs) to overcome this challenge, but the 

resulting demand models are unlikely to replicate observed demands in the absence of ad hoc 

calibration procedures. We use a generalized method of moments-based approach that combines 
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DCE data with observed market share data to estimate a choice model that yields demand 

functions that much more closely replicate observed data. (JEL Q21, Q26) 

 

1. Introduction 

Resource management agencies in the United States are tasked with setting license prices and 

other attributes like seasons, equipment restrictions and, in the case of hunting and fishing 

licenses, daily and seasonal bag limits and quotas. Their objectives in making choices about 

licenses offerings may include maximizing agency revenues, conserving or managing scarce 

natural resources, and encouraging participation among constituents. Understanding how license 

prices and other attributes influence license demand is important for making efficient resource 

management decisions.  

Estimating demand for recreational licenses can be challenging. Some prior work 

estimates demand for recreational licenses using aggregate sales data by exploiting variation in 

the nominal price of licenses over time due to inflation (Loomis et al. 2000; Erickson et al. 

2019). However, these prior approaches are not useful for estimating demand for license 

attributes, which can be important when resource management agencies seek to change these 

attributes—say, by increasing license prices or changing bag limits or equipment restrictions—or 

change the structure of license offerings altogether. Revealed preference approaches that could 

elicit this information (e.g., choice modeling or hedonic analysis using micro-level license sales 

data) are typically inappropriate since there is often no useful variation in prices or other 

attributes with which to identify preference parameters. Indeed, license prices and attributes are 

typically fixed by statute, are uniform across users (although there may be some coarse price 
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discrimination by age, residency, or landownership status), and tend not to vary for years at a 

time.  

 Stated preference approaches—particularly discrete choice experiments (DCEs; Train 

2009)—can overcome these challenges. DCEs work by presenting subjects with descriptions of 

different hypothetical products that vary in their attributes, including price. Subjects are asked to 

choose which if any of the hypothetical products they would purchase from a given set of 

alternatives. From this information, analysts can estimate the probability different subjects would 

choose a particular product, which can be extrapolated to infer market shares. Further, analysts 

can estimate preferences for product attributes by observing how subjects trade off these 

attributes for price. Because DCEs allow analysts to control variation in prices and other product 

attributes, they can be useful in estimating preference parameters for goods like recreation 

licenses for which attributes are effectively fixed over time and space. Several prior studies use 

DCEs to estimate hunter demand for hunting license attributes for big game species including 

white-tailed deer (Mackenzie 1990; Serenari et al. 2019) and turkey (Schroeder et al. 2018) as 

well as attributes of hunting clubs (Mingie et al. 2017). 

Demand estimated from DCEs is unlikely to replicate observed demand in aggregate, and 

this is well-known (e.g., Vossler et al. 2012). Aside from hypothetical bias and other 

complications, this is because respondents to DCEs are typically asked to choose between just a 

few alternatives, and the attributes of the alternatives are selected for statistical efficiency rather 

than to perfectly match real-world offerings. This lack of replication can be problematic when 

performing counterfactual analysis using these estimated models—say, to simulate the effect of 

regulatory changes to license structure. Indeed, the validity of any simulated result is 

questionable when the simulated baseline does not match reality.  
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One solution to this replication problem is ex post calibration of the estimated preference 

parameters (Louviere et al. 2000). A common approach to calibration involves adding constant 

terms to the utility functions estimated from DCE data, then calculating the values of these terms 

that result in choice probabilities that exactly replicate observed market shares (e.g., Naidoo and 

Adamowicz 2005). While this calibration procedure is elegant, it seems a bit incongruous to 

simulate behavior using different utility functions than one estimated. The availability of 

information about aggregate observed behavior also raises the question of whether this 

information can be more profitably used to improve estimation of individual-level behavioral 

models in the first place.  

To this end, Imbens and Lancaster (1994) develop an estimation approach that combines 

aggregate and individual-level data to more efficiently estimate microeconometric models. 

Briefly, their approach involves specifying a micro-level behavioral model, then deriving 

moment conditions equating predicted behavior from the model to known moments of the 

population distribution from aggregate data (e.g., from national statistics). Behavioral model 

parameters can then be estimated from these conditions using the generalized method of 

moments (GMM). Critically, and to the extent that these moment conditions hold, the estimated 

micro model should imply individual behaviors that aggregate to the observed, population-level 

behavior, obviating the need for calibration or other ad hoc procedures for ensuring replicability. 

We follow Imbens and Lancaster’s (1994) approach by combining aggregate license sales 

data with our DCE data to estimate demand for white-tailed deer hunting licenses and their 

attributes in Indiana. Compared to those from standard choice modeling approaches, our 

estimated demand functions much more closely replicate observed demand for existing deer 

licenses. Further, our parameters are estimated more efficiently such that predictions from 
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counterfactual analyses using our GMM-based model (e.g., changes to license demand or hunter 

surplus following changes to license structure) are more precise. We are not aware of prior work 

that applies this approach to estimating choice models from DCEs. 

Our work is related to the extensive literature on combining stated and revealed 

preference data for estimating willingness to pay for nonmarket goods (see Whitehead et al. 2008 

for a review). In particular, it is closely related to the study by Phaneuf et al. (2013), who 

estimate marginal willingness to pay for distance from hazardous waste sites in residential 

location choices. The authors use home sales data to estimate a hedonic price equation relating 

home price to distance to hazardous waste sites. They then sent a survey containing a DCE to the 

same home buyers, asking them to select among hypothetical houses of various prices and 

distances from hazardous waste sites. The authors use GMM to jointly estimate consumer 

preferences for distance from hazardous waste sites using as moment conditions an expression 

that equates marginal willingness to pay estimated from their DCE data to that estimated from 

the hedonic price equation. Their goals are to (1) better characterize demand for housing 

attributes for discrete changes away from the baseline observed in the sales data, and (2) mitigate 

hypothetical bias implicit in DCE data by using observed market behavior to effectively calibrate 

preference parameter estimates. Our motivations are similar, although our context is different.  

 

2. Deer Hunting in Indiana 

We start with background on white-tailed deer hunting in Indiana. This context is important for 

understanding our data and empirical approach. Hunting white-tailed deer has been a popular 

recreational activity in Indiana since the species’ recovery from extirpation due to overhunting in 

the latter half of the 19th century. The Indiana legislature enacted the first game laws in Indiana 
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in 1857, prohibiting deer hunting from January 1 through August 1 (Michaud 1957). Since then, 

significant effort has been put into allocation of annual licenses by type and date of the season 

with both conservation and recreation value in mind. 

Indiana’s state game agency, the Department of Natural Resources (DNR), manages and 

enforces hunting regulations. The DNR categorizes hunting licenses based on hunter 

characteristics, reflecting age, military service status, or residency status. There are also different 

licenses for each season, and each season features different bag limits and equipment restrictions. 

Resident hunters enjoy lower license prices across all license types, while nonresident hunters 

pay more. Table 1 lists the attributes for the most popular license types, which we focus on here.1 

 In addition to the license types mentioned previously, hunters may also purchase bonus 

antlerless licenses, each of which allow the harvest of one or more antlerless deer (i.e., female 

deer or male deer with antler spikes less than three inches long) in addition to the bag limit 

permitted under the other single-season licenses. Each Indiana county has different individual 

quotas; hunters wishing to harvest more bonus antlerless deer than the county quota allows will 

need to travel to a different county to do so. Indiana enforces a one antlered deer-per-season limit 

statewide aside from reduction zone quotas. All single-season licenses, including the first bonus 

antlerless license, cost $24. Subsequent bonus antlerless licenses cost $15 each. Finally, the DNR 

offers a license bundle, which allows the harvest of up to three deer (at most one antlered) across 

all seasons for $65, which is less than the cost of buying each single-season license individually. 

 

3. Survey Instrument and Data 

Data for the analysis come from a mail survey of Indiana resident deer hunters, conducted 

following the procedures outlined by Dillman et al. (2014). A copy of the survey is available in 
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the Appendix. The survey comprised three parts. The first part collected information on 

respondents’ hunting behavior, including their preferred seasons and the number of deer they 

want to harvest per season as well as their perceptions about disease risks in the state’s deer herd. 

The second part comprised a DCE meant to elicit respondents’ preferences towards different 

deer license attributes. The final part of the survey collected demographic information about the 

respondents.  

Our DCE presented each respondent with two hypothetical licenses alongside an option 

not to purchase either license. Each license was given an undescriptive label (“License A” and 

“License B”) and varied in the bag limit, season and equipment restrictions, and price (Table 2). 

The bag limit and season/equipment attribute levels were drawn from a list reflecting the current 

Indiana deer license structure. The price attribute levels were drawn from a range comprising 

50–300% of current license prices, which correspond with deer license price levels from nearby 

states. We used SAS to find a D-optimal design (D = 95.3) with six blocks of ten choice sets, 

with each respondent being randomly assigned to one block.2  

We sent two waves of surveys to each respondent two weeks apart in January 2021. In 

addition, each respondent received a postcard ten days after the initial mailing, reminding them 

to complete the survey if they had not already. Our sample comprised 7,500 resident hunters 

whose addresses were randomly drawn from a list of hunters who had purchased at least one deer 

license the previous five years. In total, 1,815 hunters (24%) returned the survey. After removing 

surveys with incomplete responses or presumed protest responses, the final number of usable 

responses was 1,398, for a final response rate of ~19%. Appendix Table A2 presents the 

proportion of our sample by demographic characteristic—including gender, age, and income—

along with the population proportions calculated from IDNR data.  
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4. License Demand Estimation 

We now describe our approach for estimating demand for deer hunting licenses using the data 

from our DCE. We start by developing a structural model of hunters’ license purchasing 

behavior. We will use this model to derive moment conditions equating predicted license buying 

behavior from our model to observed, aggregate sales data that we will use in estimation. 

 

A Model of License Choice 

Assume hunter i ∈ {1, …, N} has exogenous preferences over the number of deer (including 

both antlered and antlerless) that he or she wishes to harvest. In general, these preferences may 

depend on a vector of the hunter’s personal characteristics, Zi, which includes income and has 

joint density 𝑓(𝐙). Denote the total desired harvest as 𝑑(𝐙𝑖).3 

For simplicity, we assume hunters make license purchasing decisions in two separate 

stages. In stage 1, which occurs prior to the start of the deer season, hunters face a choice set 

comprising the first four licenses listed in Table 1. Each permit allows hunters to hunt in distinct 

seasons, including archery season, firearm season, and muzzleloader season. In addition, hunters 

can choose to purchase a license bundle, which allows the hunter to harvest up to three deer 

across any season. We make a simplifying assumption that individuals that wish to hunt across 

multiple seasons will purchase a bundle; otherwise, they will purchase either an archery, firearm, 

or muzzleloader license. This implies the choice of stage 1 licenses is mutually exclusive. 

Finally, we also assume the hunter can opt out, or choose no license in a given year. 

 In stage 2, hunters decide whether to buy bonus antlerless licenses. We assume this 

decision occurs conditional on (1) the hunter filling the bag limit on the license they choose in 
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stage 1, and (2) the desired harvest 𝑑(𝐙𝑖) being greater than the bag limit from their stage 1 

license. We assume that the hunter buys bonus antlerless licenses sequentially—that is, they 

purchase each additional bonus antlerless license conditional on having filled the bag limit for a 

previous license purchase, and that they may purchase additional bonus antlerless licenses until 

their total harvest equals 𝑑(𝐙𝑖). 

 Formally, let the indirect utility from choosing license j ∈ 𝐽1 = {archery, firearm, 

muzzleloader, bundle} for a specific hunter i in stage 1 be 𝑉𝑖𝑗 = 𝑈(𝐗𝑗
1, 𝐙𝑖; 𝛉) + 𝜖𝑖𝑗, where 𝑈(⋅) 

is the “deterministic” portion of utility which is, in general, a function of an (observed) K-

dimensional vector of license attributes 𝐗𝑗
1—including equipment/season restrictions, bag limits, 

and license prices—and Zi. The K-dimensional vector 𝛉 includes marginal utility parameters to 

be estimated. The term 𝜖𝑖𝑗 is a random utility shock. The deterministic component of utility from 

opting out, indexed as j = 0, comprises an alternative-specific constant (ASC) 𝜃0. 

The probability hunter i chooses license 𝑗 ∈ {0, 𝐽1} in stage 1 is  

 

𝜋𝑗
1(𝐗1, 𝐙𝑖; 𝛉) = Pr (𝑈(𝐗𝑗

1, 𝐙𝑖; 𝛉) + 𝜖𝑖𝑗 ≥ 𝑈(𝐗𝑗′
1 , 𝐙𝑖; 𝛉) + 𝜖𝑖𝑗′ ∀𝑗 ≠ 𝑗′), [1] 

 

where we refer to 𝐗1 = {𝐗𝑗
1}

∀𝑗∈𝐽1 as the stage 1 “market” attribute vector to distinguish it from 

the DCE data we use for preference parameter estimation below. We can state demand for 

license j in the form of market shares using [1]. Specifically, let the probability hunter i buys 

license 𝑗 ∈ 𝐽1 conditional on buying a license be �̂�𝑗
1(𝐗1, 𝐙𝑖; 𝛉) =

𝜋𝑗
1(𝐗1, 𝐙𝑖; 𝛉) ∑ 𝜋𝑗′

1 (𝐗1, 𝐙𝑖; 𝛉)𝑗′∈𝐽1⁄ . The market share for license j is then  
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𝑞𝑗(𝐗1; 𝛉) = ∫ ⋯ ∫ �̂�𝑗
1(𝐗1, 𝐙; 𝛉)𝑓(𝐙)d𝑍1 d𝑍𝐾𝑍𝐾𝑍1

. [2] 

 

Next, consider the demand for bonus antlerless licenses. The hunter buys these in stage 2 

of their decision problem. The hunter can only buy one archery license, firearm license, 

muzzleloader license, or license bundle, and hence the hunter’s choice set in stage 2 reduces to 

either opting out or buying a bonus antlerless license. The probability a hunter purchases a bonus 

antlerless license is  

 

𝜋2(𝐗bonus, 𝐙𝑖; 𝛉) = Pr(𝑈(𝐗bonus, 𝐙𝑖; 𝛉) + 𝜖𝑖,bonus ≥ 𝜃0 + 𝜖𝑖0). [3] 

 

We assume for simplicity that this probability is independent of the number of deer already 

harvested. Recall, however, that the price of the first bonus antlerless license is $24, whereas 

each subsequent license costs $15. We therefore use 𝐗bonus,1 to refer to the attributes of the first 

bonus license and 𝐗bonus,2 to refer to the attributes of all subsequent licenses.  

 Denote the bag limit for stage 1 license j as �̅�𝑗. We assume the probability a hunter 

harvests a deer (antlered or antlerless) is constant, independent across harvests, and equal to p. 

We infer a value of p = 0.45 from DNR harvest data. Hence, the probability that a hunter fills 

their bag limit for license j ∈ 𝐽1 is 𝑝�̅�𝑗. If 𝑑(𝐙𝑖) > �̅�𝑗 such that the hunter wants to harvest more 

deer than allowed under their stage 1 license choice, the hunter will have the opportunity to 

purchase one or more bonus antlerless licenses. The expected number of bonus antlerless 

licenses purchased per hunter is 

 

𝑞bonus(𝐗2; 𝛉) = ∫ ⋯ ∫ ∑ ∑ 𝛿 Pr(𝛿|𝑑(𝐙) − �̅�𝑗) 𝜋𝑗
1(𝐗1, 𝐙, 𝛉)𝑝�̅�𝑗𝛿𝑗∈𝐽1 𝑓(𝐙)d𝑍1 ⋯ d𝑍𝐾𝑍𝐾𝑍1

, [4] 
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where  

 

Pr (𝛿|�̅�𝑗 − 𝑑(𝐙))

= {
𝜋2(𝐗bonus,1, 𝐙; 𝛉)[𝜋2(𝐗bonus,2, 𝐙; 𝛉)𝑝]𝛿−1[1 − 𝑝𝜋2(𝐗bonus,2, 𝐙; 𝛉)] 0 < 𝛿 < 𝑑(𝐙) − �̅�𝑗

𝜋2(𝐗bonus,1, 𝐙; 𝛉)[𝜋2(𝐗bonus,2, 𝐙; 𝛉)𝑝]𝛿−1 𝛿 = 𝑑(𝐙) − �̅�𝑗
0 otherwise.

 

 

(See Appendix for derivation.) 

 

Preference Parameter Estimation 

Equations [2] and [4] constitute the demand system for deer licenses. We can estimate these 

equations in a few ways. The standard approach, given our choice data, is to specify a 

distribution for the error terms 𝜖𝑖𝑗—say, type-1 extreme value, so that the choice probability in 

[1] takes the standard conditional logit form 𝜋𝑗(𝐗𝑖𝑡
CE, 𝐙𝑖; 𝛉) = 𝑒𝑈(𝐗𝑖𝑗𝑡

CE,𝐙𝑖;𝛉) ∑ 𝑒𝑈(𝐗𝑖𝑗′𝑡
CE ,𝐙𝑖;𝛉)

𝑗′⁄ . Note 

that the attribute data 𝐗𝑖𝑡
CE = {𝐗𝑖𝑗𝑡

CE}
∀𝑗

 come from our optimal experimental design—these are the 

license attributes survey respondent i was shown in choice occasion t—and hence are distinct 

from the real-world, market license attributes, X1 and X2, described in the previous section. We 

can then estimate the marginal utility parameters θ via maximum likelihood (MLE). Formally, 

we specify the log-likelihood as ℒ = ∑ 𝜓𝑖𝑡𝑗 ln 𝜋𝑗(𝐗𝑖𝑡
CE, 𝐙𝑖; 𝛉)𝑖×𝑡×𝑗 , where 𝜓𝑖𝑡𝑗 = 1 if survey 

respondent i chose alternative j in choice occasion t and zero otherwise. The estimated 

parameters, which we denote �̂�MLE, solve the first-order conditions: 
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𝜕ℒ
𝜕𝛉

= ∑ 𝜓𝑖𝑡𝑗 [
𝜕𝑈(𝐗𝑖𝑗𝑡

CE,𝐙𝑖;𝛉)

𝜕𝛉
− ∑

𝜕𝑈(𝐗𝑖𝑗′𝑡
CE ,𝐙𝑖;𝛉)

𝜕𝛉
𝜋𝑗′(𝐗𝑖𝑡

CE, 𝐙𝑖; �̂�MLE)𝑗′ ]𝑖×𝑡×𝑗 = 0.    [5] 

 

We can then predict demand by calculating [2] and [4] using �̂�MLE, attributes of the market 

licenses 𝐗1 and 𝐗2, and knowledge of the population distribution of 𝐙𝑖. (Estimates of a limited 

set of hunter characteristics are frequently available from state or federal-level wildlife 

management agencies.) Note, however, that the resulting demand estimates will match observed 

demand for the existing suite of licenses only under very restrictive conditions. Specifically, 

suppose we showed a representative sample of respondents a single choice set with the entire 

suite of available, real-world licenses, each of which had levels set at their real-world values. If 

the data from this exercise, which we'll call 𝐗𝑖
CE, comprised a full set of ASCs such that 𝑋𝑖𝑗𝑙

𝐶𝐸 = 1 

for j = l and zero otherwise, and utility is linear in these ASCs, then [5] would reduce to  

 

∑ [𝜓𝑖𝑙 − 𝜋𝑙(𝐗𝑖
CE, 𝐙𝑖; �̂�MLE)]𝑖 = 0 

⇒ ∑ 𝜓𝑖𝑙𝑖
𝑁

= ∑ 𝜋𝑙(𝐗𝑖
CE,𝐙𝑖;�̂�MLE)𝑖

𝑁
 ∀𝑙,

 [5′] 

 

implying that the mean estimated probability of choosing alternative l (the right-hand side of the 

second equation in [5′]) exactly equals the observed aggregate choice share (the left side). This 

feature of conditional logit models is well-known (Klaiber and von Haefen 2019). However, our 

data has several characteristics that are common among those collected from DCEs that would 

prevent our estimated choice shares from matching observed ones. First, we showed our 

respondents choice sets comprising two alternative licenses and a “no choice” option, rather than 

the full suite of licenses. These alternatives were “generic” in the sense described by Holmes and 

Adamowicz (2003): they were given undescriptive labels (“License A” and “License B”) and all 
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attributes of each alternative varied between choice occasions. We made these choices for 

statistical efficiency, and indeed this basic format is common among DCEs. As a consequence, 

though, there is no meaningful variation in alternatives upon which to identify any ASCs. Even if 

respondents were shown labeled choice sets such that we could estimate ASCs, we would not 

expect the estimated shares from our choice experiment to match real-world shares. To see why, 

consider a simplified case in which a respondent who does not own a bow is shown a choice set 

containing two archery licenses and an opt-out option. It is likely this respondent would choose 

the opt-out option, whereas in a real-world setting this person would simply choose a different, 

non-archery license. As a result, the choice experiment would overestimate this respondent’s 

propensity to choose the opt-out option.4 Finally, our sample is not perfectly representative of the 

population; in particular, the sample is older and has fewer middle-income individuals relative to 

the population.5 Even if we were to adjust for this (e.g., by applying appropriate post-

stratification weights in estimation), we would not expect our model to replicate observed market 

shares for the reasons cited previously.  

We can force our model to replicate observed market shares by calibrating utility to 

observed market shares, which we denote 𝑞𝑗
∗, 𝑗 ∈ 𝐽1. The standard approach to calibration is to 

(1) add an ASC αj to the estimated utility functions, such that utility from alternative j is 𝛼𝑗 +

𝑈(𝐗𝑗
1, 𝐙𝑖; 𝛉) + 𝜖𝑖𝑗; (2) use these augmented utilities to calculate market shares 𝑞𝑗(𝐗1; [𝛂 �̂�MLE]) 

and 𝑞bonus(𝐗2; [𝛂  �̂�MLE]) from [2] and [4]; and (3) solve for the values of these constants that 

replicate observed demand: 

 

𝐪(𝐗1; [𝛂  �̂�MLE]) − 𝐪∗ = 𝟎 
𝑞bonus(𝐗2; [𝛂  �̂�MLE]) − 𝑞bonus

∗ = 0
  [6] 
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(e.g., Naidoo and Adamowicz 2005). We chose not to apply this calibration approach to our 

problem. This is for a few reasons. First, the interpretation of the αj terms is not straightforward 

in our context. In standard choice settings, ASCs capture preferences over attributes specific to a 

particular alternative that are not included in the model specification. However, hunting licenses 

are completely defined by price, bag limits and season/equipment restrictions; it is not clear what 

other attributes may be captured by an ASC, and hence including them in the model ex post for 

the purpose of calibration is hard to defend. Conversely, even if the model was mis-specified, 

estimating a model and then calculating a term outside the estimation to force replication seems a 

bit ad hoc. Justifying the term’s presence by stating that it can compensate for possible model 

misspecification just leads to further questions about the quality of the original estimates. 

Finally, this calibration procedure cannot be used when simulating demand for entirely new 

license types since there is no existing data with which to calibrate utility. 

Instead, we use a GMM-based approach following Imbens and Lancaster (1994) that uses 

the observed market shares to inform estimation of the preference parameters. Formally, we use 

equations [2] and [4] to specify a system of K + 4 moment conditions  

 

𝐠1(𝐗CE, 𝐙𝑖; 𝛉) = 1
𝐼×𝑇

∑ 𝜓𝑖𝑡𝑗 [
𝜕𝑈(𝐗𝑖𝑗𝑡

CE,𝐙𝑖;𝛉)

𝜕𝛉
− ∑

𝜕𝑈(𝐗𝑖𝑗′𝑡
CE ,𝐙𝑖;𝛉)

𝜕𝛉
𝜋𝑗′(𝐗𝑖𝑡

CE, 𝐙𝑖; 𝛉)𝑗′ ]𝑖×𝑡×𝑗 = 𝟎

𝐠𝟐(𝐗1; 𝛉) = 𝐪(𝐗1; 𝛉) − 𝐪∗ = 𝟎
𝑔3(𝐗2; 𝛉) = 𝑞bonus(𝐗2; 𝛉) − 𝑞bonus

∗ = 0,

 [7] 

 

then choose the marginal utility parameters �̂�GMM = argmin
𝛉

𝐆′𝐖(𝛉)𝐆, where 𝐆 =

[𝐠1(⋅) 𝐠2(⋅) 𝑔3(⋅)]′ and 𝐖(𝛉) is a K × K weight matrix. Note that including 𝐠2(⋅) in system [7] 
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serves a similar role as estimating ASCs would if the latter were actually estimable. In contrast to 

a model with ASCs, replication under the GMM approach will not be exact, but we show later 

that our predicted shares are still quite close to observed shares. 

It is worth noting how parameter identification differs between the standard estimation 

approach and the GMM-based approach we use here. Under the GMM approach, the market 

moment conditions 𝐠2(⋅) and 𝑔3(⋅) pin down the relative magnitudes of the total utility from 

each combination of attributes observed in the market. The DCE data identifies differences in the 

relative magnitudes of the contributions to total utility from each individual license attribute. 

Under the standard approach, the DCE data performs both tasks. It is the former task that allows 

the GMM approach to more closely replicate the observed demand; because subjects in the 

DCEs never see the entire suite of actual licenses available in the same choice set, the standard 

approach cannot identify differences in the magnitudes of total utility across license types as 

effectively as the GMM approach.  

We must specify the weight matrix 𝐖(⋅) before proceeding with estimation. We set 

𝐖(⋅) = 𝐈𝐾, where 𝐈𝐾 is a K-dimensional identity matrix. Doing so results in estimates �̂�GMM that 

are consistent, if not asymptotically efficient.6  

 

5. Results 

We estimate marginal utility parameters θ assuming the indirect utility from license j depends 

only on the attributes of each license and not on the hunters’ personal characteristics Zi. 

Formally, we specify utility for license 𝑗 as 𝑈𝑗(𝐗𝑗; 𝛉) = 𝐗𝑗𝛉, where the Xj are dummy-coded 

variables describing the bag limits and equipment/season restrictions for each license (see Table 

17) and price.8 The first and third columns of Table 3 show �̂�MLE and �̂�GMM, respectively. Figure 
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1 shows estimated and actual market shares for the actual suite of licenses offered to hunters, 

along with 95% confidence intervals. 

 

[Insert Table 1 about here] 

 

[Insert Figure 1 about here] 

 

The second and fourth columns of Table 3 show the standard errors for each estimate, 

clustered at the individual level. All parameter estimates are significantly different from zero 

except for the 1 antlered + 1 antlerless bag limit level in both models; this simply means that 

respondents receive no extra utility from being able to harvest a second antlerless deer, all else 

equal. Likewise, all estimates have the same signs. The signs are also sensible; hunters gain the 

greatest utility from the ability to harvest one antlered and two antlerless deer (the base category 

for the bag limit dummy variables), with smaller bag limits generating relatively less utility. 

Likewise, the ability to hunt across any season (the base case for the equipment/season dummy 

variables) generates more utility than being restricted to hunt within a single season—whether 

archery, muzzleloader, or firearm season. The parameter on license price is almost identical 

across models. However, the estimates of other license attributes differ in some key ways. 

Notably, the parameter estimates for the one antlered, one antlerless bag limit dummy and the 

archery equipment dummies are considerably smaller under the GMM approach. These attributes 

correspond to the real-world archery season. Figure 1 shows that the MLE model badly 

overestimates market shares for this license. In contrast, the GMM parameter estimates assign 

much less utility to these attributes, resulting in a closer match between predicted and observed 
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shares. Similarly, the GMM model also generates a closer match between predicted and observed 

shares for the license bundle. 

The model parameters are also more precisely estimated under the GMM approach. the 

standard errors of our GMM estimates as a fraction of the estimated parameters are much smaller 

than under the MLE approach. The relative efficiency of the GMM approach is well-known; 

indeed, it was the main motivation behind Imbens and Lancaster’s (1994) original paper. 

We highlight the advantage of the GMM approach with a counterfactual analysis in 

which we simulate changes to deer license demand following changes to license offerings. 

Specifically, we simulate the effect of (1) changing bag limits for the muzzleloader and archery 

licenses to a single antlered deer, and (2) increasing single-season license prices from $24 to 

$40–$60 each and license bundles from $65 to $90, with no discount for bonus antlerless 

licenses. Officials with the DNR are considering this scenario as a means of increasing agency 

revenues and improving their ability to manage antlered and antlerless deer populations within 

the state. For each combination of license prices, we calculate compensating variation (CV), 

predicted changes to DNR revenues, and the predicted change in demand for each license type 

relative to baseline license demand under the MLE and GMM models. For the MLE model, we 

calibrate baseline demand for each existing license type as in [6] so as to not unfairly stack the 

deck against this approach. Details about the simulation are in the Appendix; here, we only 

report the simulation results and provide the basic intuition behind our findings.  

Figure 2 shows the resulting change in demand for each of the single license types 

(archery, firearm, muzzleloader, and bonus antlerless) assuming the price of a bundle is fixed at 

$90. The main effect of this change in license structure is to make archery licenses less 

appealing; note from Table 3 that the marginal utility from the one antlered deer bag limit is 
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considerably smaller in magnitude than that from the one antlered and one antlerless bag limit. 

The effect is to cause hunters to substitute away from archery licenses. The response to the 

change in structure is similar under each model, although the MLE model predicts a larger 

number of hunters will stop buying archery licenses.  

 

[Insert Figure 2 about here] 

 

Figure 3a shows the CV for the simulated license changes per person under the GMM 

and MLE models. It is negative, implying hunters are worse-off following the change to license 

structure. The GMM estimates are larger (i.e., less negative) than the MLE estimates on average, 

although the differences in means are small and, for the most part, not statistically significantly 

different.  

 

[Insert Figure 3 about here] 

 

Figure 3b shows the simulated change in IDNR license revenues following the change in 

license offerings. Agency revenues increase with the single license price, even though overall 

demand for licenses decreases. This implies license demand is inelastic and suggests some scope 

for increasing license prices from their baseline levels. The predicted increase in revenue is 

smaller under the GMM model due to more hunters opting out, although the differences are not 

statistically significant. 

Notably, the confidence intervals around the CV and revenue changes are much smaller 

for the GMM model. This is despite the fact that we calibrated the MLE model to replicate 
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baseline demand. The explanation for this result is straightforward. We calculated the confidence 

intervals in Figure 3 using the Krinsky-Robb procedure by taking random draws of the model 

parameters from their estimated distributions under the MLE and GMM models. Denote these 

parameters as �̂�MLE
𝑟  and �̂�GMM

𝑟 , where the superscript r denotes the draw. Given the distributional 

assumption on 𝜖𝑖𝑗, we used these parameter draws to calculate expected baseline surplus under 

the MLE and GMM models, respectively: 

 

𝑆MLE
0,𝑟 = 1

|𝜃price
𝑟 |

[ln (∑ 𝑒𝛼𝑗
𝑟+𝐗𝑗

1�̂�MLE
𝑟

𝑗∈𝐽1 ) + 𝑞bonus(𝐗2; [𝛂𝑟 �̂�MLE
𝑟 ]) ln (∑ 𝑒𝛼𝑗

𝑟+𝐗𝑗
2�̂�MLE

𝑟
𝑗∈𝐽2 )], [8a] 

 

𝑆GMM
0,𝑟 = 1

|𝜃price
𝑟 |

[ln (∑ 𝑒𝐗𝑗
1�̂�GMM

𝑟
𝑗∈𝐽1 ) + 𝑞bonus(𝐗2; �̂�GMM

𝑟 ) ln (∑ 𝑒𝐗𝑗
2�̂�GMM

𝑟
𝑗∈𝐽2 )], [8b] 

 

where θprice is the parameter on price (such that |𝜃price| is the marginal utility of income) and 𝐽2 

is the hunter’s choice set of licenses available in the second-round, comprising only the opt-out 

and bonus antlerless licenses. Note that the only difference between these two surplus measures 

(other than the parameter values themselves) is the presence of the 𝛼𝑗
𝑟 terms in [8a]. These terms 

are calculated from the calibration procedure in the MLE model, but not the GMM model. Next, 

let �̌�1 and �̌�2 be the first- and second-stage license attributes following the simulated change in 

bag limits and price. Surplus following this change, 𝑆MLE
1,𝑟  and 𝑆GMM

1,𝑟 , is given by [8] after 

substituting �̌�1 and �̌�2 for the market attributes 𝐗1and 𝐗2. CV is then  

 

𝑆𝑘
1,𝑟 − 𝑆𝑘

0,𝑟, 𝑘 ∈ {MLE, GMM}.  [9] 
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The baseline surplus 𝑆𝑘
0,𝑟 will be similar under both the GMM and MLE models. This is because 

the calibration procedure used in the MLE model will result in utility functions 𝛼𝑗
𝑟 + 𝐗𝑗

1�̂�MLE
𝑟  

and 𝛼𝑗
𝑟 + 𝐗𝑗

2�̂�MLE
𝑟  that replicate the baseline, observed behavior. Baseline surplus—which 

depends on these utility functions—would therefore not vary, regardless of the parameter draws. 

Of course, we do not calibrate the GMM model estimates. However, the estimated variance of 

the GMM estimates is relatively small, and since the GMM estimates reliably replicate observed 

behavior, we would expect the distribution of baseline surplus to be fairly tight in the GMM 

model as well. Given that the calibration procedure (in the MLE model) and the relatively 

precise estimates of θ (in the GMM model) effectively pin down the second term in [9], the 

variation in CV must arise primarily from variation in the first term of [9]. To the extent that the 

variance of the MLE estimates is larger than for the GMM estimates, we would expect the 

variance of this surplus term to be greater in the MLE model as well. 

 The explanation for the wider confidence intervals on the revenue calculations follows a 

similar logic. Taken together, these results suggest that the GMM approach may provide more 

precise predictions than calibration-based procedures. Furthermore, the GMM approach is more 

broadly applicable; the calibration procedure cannot be reliably applied to simulate 

counterfactual scenarios examining demand for novel license types given the lack of market data 

to calibrate the model. 

 

6. Conclusion 

Estimating demand for recreational licenses and their attributes is complicated by the fact that 

there is typically no meaningful variation in license prices or structure that one can exploit. 

DCEs offer a means of experimentally varying license attributes to identify preference 
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parameters. An issue with choice models estimated from DCEs is that the predicted market 

shares are unlikely to replicate observed market shares, reducing the credibility of counterfactual 

simulations performed with these models. It is possible to calibrate the estimated choice models. 

A common approach is to add ASCs to the estimated choice model ex post, then solve for the 

value of these ASCs that replicate observed aggregate choice data. Calibration is valid when 

simulating demand for complex, multi-attribute goods that are similar to the existing goods for 

which one has aggregate data (net of changes to the observed attributes from the choice 

experiment). Calibration cannot be used in cases like the one we examine here, which involves 

simulating demand for novel goods for which observed aggregate data does not exist. We use a 

GMM-based approach to estimate a choice model using a combination of DCE data and 

observed license sales data. Our estimated model much more closely replicates observed market 

share data relative to a standard conditional logit model, adding credibility when performing 

counterfactual analyses of license structure changes. This approach can also be used to estimate 

demand for novel goods—here, new types of hunting licenses—for which no aggregate choice 

data exists. 

Our approach is slightly more data-intensive than the standard approach to estimating 

DCE choice models. However, this is of little consequence as resource management agencies 

should track license sales data; indeed, this information is routinely reported to sportsmen and –

women in publicly-available agency publications.  
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Table 1 

Market License Attributes 

Season/equipment 

restrictions Valid dates (2021 season) Price Bag limit 

Archery 

Oct. 1–Jan. 2 

$24 

1 antlered, 1 antlerless OR 2 

antlerless 

Firearm Nov. 13–28 $24 1 antlered 

Muzzleloader Dec. 4–19 $24 1 antlered 

Bundle Season long $65 1 antlered + 2 antlerless 

Bonus antlerless Season long (except in 

certain counties) 

24 for first one, 

$15 thereafter 

1 antlerless (up to county 

quota) 
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Table 2 

License Attributes and Levels used in the Choice Experiment 

Attributes Levels 

Price ($) 12, 19.20, 31.20, 36, 72 

Bag limit 1 antlered, 1 antlerless, 1 antlered + 1 antlerless or 2 

antlerless, 1 antlered + 2 antlerless 

Season/equipment restrictions Archery, muzzleloader, firearm, any 
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Table 3 

Parameter Estimates for Indiana Resident Deer License Demand Models 

 

(1) 

MLE 
 

(2) 

GMM 

Variable Estimate SE 
 

Estimate SE 

Price -0.039 0.006 
 

-0.039 0.006 

Opt-out -3.632 0.737 
 

-3.994 0.459 

Bag limit      

One antlered -1.516 0.345 
 

-1.497 0.304 

One antlerless -2.183 0.506 
 

-2.213 0.289 

One antlered, one antlerless -0.294 0.227 
 

-0.654 0.391 

One antlered, two antlerless (base case) — —  — — 

Equipment/season      

Archery  -1.508 0.316 
 

-1.948 0.167 

Muzzleloader -2.151 0.408 
 

-2.710 0.106 

Firearm -0.732 0.273 
 

-0.962 0.072 

Any (base case) — —  — — 

 

Note: Standard errors are clustered at the individual level. A total of 1,398 unique individuals 

and 13,752 choice occasions are in our data set. 
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Figure 1 

Estimated and observed market shares of Indiana deer licenses 

 

Figure 2 

Mean change in demands for different license types under MLE and GMM models following 

change in bag limit to one antlered deer for archery, muzzleloader licenses 

 

Figure 3 

Changes to a) agency revenue and b) compensating variation following change in bag limit to 

one antlered deer for archery, muzzleloader licenses 

 

 
1 Archery, firearm, muzzleloader and bundle licenses comprised >90% of adult resident license sales in 

2019 (Caudell and Vaught 2019). 
2 Specifically, we used the OPTEX algorithm in SAS to identify a D-optimal design. This algorithm takes 

as inputs the number of choice sets and blocks we wish to include in the design, and then chooses the one 

that maximizes the determinant of the information matrix |X′X|—where X denotes the design attributes—

which is proportional to the inverse of the covariance matrix in linear models. Other approaches for 

designing experiments exist. In particular, D-efficient designs tend to be more efficient but require prior 

knowledge of the parameters to be estimated in order to generate efficient designs. For this reason, D-

optimality is commonly used as a design criterion even for nonlinear models like ours (SAS Institute, Inc. 

2014). We chose the number of choice sets and blocks to make the D-optimality as close to 100 as 

possible while keeping the experiment to a reasonable size. 
3 In general, the desired harvest 𝑑𝑖 = 𝑑(𝐙𝑖) could depend on the hunter’s characteristics, including age, 

income, education level, and hunter experience level. While we have survey data on these characteristics, 

we find that none of them influence di and hence treat this as a scalar in our analysis. 
4 As an aside, one may wonder why we did not just estimate a choice model using actual license sales 

data from the DNR, as doing so (including a full set of ASCs as described above) would obviate the need 

for our more complicated approach. Estimating such a model would not be feasible in our case because 
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prices are perfectly correlated to license type. Hence, the ASCs would not be identified due to 

collinearity. This is a common feature of regulated goods like recreational permits and not specific to our 

research setting. Practically speaking, this type of data may also be restricted for privacy or other reasons. 
5 The IDNR does not collect income data for its hunters. We calculated population income shares using 

census block group-level median household income from the U.S. Census Bureau’s 2019 American 

Community Survey (see Appendix Table A2, note a). For this reason, one should be cautious when 

comparing the (calculated) population and (reported) sample income shares. 
6 It is well known that the asymptotically efficient weight matrix equals the inverse of the asymptotic 

covariance of the moment vectors (Greene 2012). The market moment conditions 𝐠2(⋅) and 𝑔3(⋅) are 

effectively derived from different data than 𝐠1(⋅), and as a result we set the covariance terms between 

these groups of moments to 0. This leads to numerical instabilities when calculating the inverse of the 

resulting covariance matrix. Hence, we chose to use 𝐖(⋅) = 𝐈𝐾.  
7 The real-world bag limits for the muzzleloader license and the license bundle are slightly different from 

those shown in Table 1: the muzzleloader license allows hunters to harvest one species of either sex, 

whereas the license bundle allows harvest of one antlered and two antlerless deer or three antlerless deer. 

We omitted these as levels from our choice experiment to reduce the size of our experimental design and 

because the IDNR is considering eliminating bag limits that allow harvest of either sex deer—hence, 

these bag limits would not be useful in our counterfactual analyses. We set the muzzleloader bag limit to 

be one antlered deer. This reflects the fact that two-thirds of the muzzleloader license buyers in our survey 

data only want to harvest a single, antlered deer, while the remaining buyers want to harvest one antlered 

and one antlerless deer (e.g., by buying a bonus antlerless license). We set the bundle bag limit to be one 

antlered and two antlerless deer for the same reason; less than one percent of bundle license buyers in our 

data do not want to harvest an antlered deer, implying the intended use of the bundle is to harvest one 

antlered deer and up to two antlerless deer.  
8 This specification implies that our choice model takes the standard conditional logit form. Conditional 

logit models assume preference homogeneity and are susceptible to the independence of irrelevant 

alternatives (IIA), which implies unrealistic substitution patterns in the estimated model. Hausman and 

McFadden (1984) derive a specification test to determine whether the conditional logit model is 

appropriate given the choice data. We conducted this test in Appendix Section A.2 and find that the IIA 

assumption under the conditional logit model does not hold in our data. This finding suggests 

generalizing our modeling approach to a latent class or mixed logit model, neither of which suffer from 

the IIA assumption. These models also allow for preference heterogeneity among respondents. 

Incorporating either of these models into our approach would be straightforward; we would simply need 

to replace 𝐠1(⋅) in [7] with the latent class or mixed logit gradients. However, we opted not to do this. We 
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feel the more useful comparison of model prediction is between the GMM-based approach and a 

conditional logit model. As we explained previously, it is possible to get perfect in-sample prediction 

from a conditional logit model, but not from a latent class or mixed logit model. Hence, explaining the 

merits of the GMM approach relative to a conditional logit model makes for the most honest comparison 

of possible approaches.  
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