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Abstract 

 

We examine a half-century of crop yield growth along an 800-mile transect in the U.S. 

Great Plains. The main contributors to growth were non-specific technical change +53%, 

irrigation +26%, fertilizer +13% and chemicals +10%. Environmental changes were 

small and had a minor impact. The wide range of agroclimatic conditions produced 

significant sub-regional deviations. Irrigation was important in the more arid and warmer 

areas of the west, while fertilizer and chemicals were more important in the humid east. 

Sensitivity to weather has increased in the rainfed regions of the east while it has 

decreased in irrigated regions of the west.    
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1. Introduction 

The potential for crop production to support the burgeoning world population, in the face 

of climate change, has motivated dozens of studies reported during the new millennium. 

Many of these, including this one, have been statistical studies examining the sources of 

the dramatic increase in aggregate crop yields since the 1950s (See Alston, Babcock and 

Pardey, 2010, for a collection of studies about the main agricultural producing countries). 

They have examined the impacts on yields of such factors as weather, management 

intensification, irrigation, and non-specific technical change. 

What can be said of these efforts? Most of them have measured the response to 

factors mentioned, but few have gone the step further to estimate the contribution of these 

factors to observed yield increases. Temperate zone studies have generally found 

substantial negative crop yield responses to high temperature, with response to 

precipitation varying by region. Because climate changes are predicted to increase 

temperatures in most areas of the globe, the general conclusions have been that climate 

change will decrease crop yield growth (Schlenker and Roberts, 2009; Lobell, Schlenker 

and Costa-Roberts, 2011; Fisher et al., 2012; Urban et al., 2012; Roberts, Schlenker and 

Eyer, 2012; Nelson et al, 2014; and Zhao et al., 2017). Some global studies of the 

agricultural sector growth suggest that technical change will continue to increase 

production (Fuglie, 2012), while experimental plot studies indicate that higher CO2 

concentrations in the crop canopy will also increase crop yields (Long et al., 2004). The 

likely trend of crop yields in the presence of climate change still remains poorly 

understood.  
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 2 

A number of recent papers have examined the sources of growth in aggregate 

crop and livestock production between 1960 and 2004, using mostly the same well-used 

state-level data set from USDA (ERS, 2017).  Chambers and Pieralli (2020) provide a 

review of most of them. Of these, only Chambers and Pieralli (2020) and Njuki, Bravo-

Ureta, and O’Donnell (2018) attempt to include the contributions of weather in the 

growth decomposition. These two studies differ markedly from ours in that they examine 

state-level aggregate crop and livestock technology for the entire U.S., whereas we 

examine county-level crop technology along a transect of 101 counties. Our approach 

required a more painstaking assembly of county-level data for estimating production 

function parameters, but it allows us to distinguish technology responses more narrowly 

by evaluating predicted yield responses using individual county annual observations and 

by grouping them into five subregions along the gradient.  

Studies of changes in aggregate crop yields face a scale paradox: it is local 

weather, soil, and management conditions that actually determine yield changes, but it is 

yields aggregated to the regional and global scale that will provide "a broader perspective 

on what's going on with agriculture and weather" (Chambers and Pieralli, 2020, p. 26). 

Pixel-level data are available to examine yield growth at only a tiny sample of any 

country’s crop production surface, but pixel-level crop growth models and experimental 

plots can reveal a fundamental understanding of how plants grow and respond to stimuli. 

Geographically aggregated yield response, on the other hand, represents an amalgam of 

pixel-level responses that may not closely resemble that for individual pixels, or may as 

in the current study mask micro-level response and contribution phenomena. Here we 
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 3 

examine county-level crop technology in a search for insights not evident from recent 

studies that have examined state-level data on aggregated crop production.   

In this study, we examine a half-century of crop yield growth along an 800-mile 

transect of the forty-first parallel North in the U.S. Great Plains (41st || hereafter), between 

the Rocky Mountains and the Mississippi River. Why this particular set of counties?  One 

consideration is that it is intermediate in size between national-level and pixel-level levels 

of aggregation we mention above, providing a relatively compact area of the plains that is 

nonetheless heterogeneous with respect to soils, climate, and water resources.  This we 

expected to allow us to identify the yield impact of these variables, along with producers’ 

responses in the use of fertilizers, chemicals and irrigation, yet still allow us to 

characterize the production relationships as a single technology. The agricultural history 

and natural environment of the transect provide a rich set of observations for examining 

how agricultural technology and weather have interacted to double agricultural yields 

between 1960 and 2008. While the plains of this transect were all prairies prior to 

settlement by Europeans, the gradient in temperatures, precipitation, soils, and 

groundwater availability provide an opportunity for inferring much about agricultural 

technology from county-level data.  Our analysis enables us to identify the separate 

contributions of input intensification, irrigation, soil organic matter, weather, and of a 

residual time trend interpreted as non-specific technical change by estimating a general 

biomass yield response function for the 41st|| transect, from which we draw inferences for 

five subregions along the transect by evaluating the resulting model using annual 

observation of weather and soil conditions in each county. This county-level analysis of 

crop yields reveals substantial heterogeneity in contributions to output growth. 
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2. Theoretical framework 

We assume that production decisions are made by profit-maximizing farmers who 

operate under perfect competition in all commodity and factor markets. Farmers choose 

their optimum production and input requirements, subject to the production function Y= f 

(X, z, e, t), output and input prices, the characteristics of the environment (weather, soil, 

etc.) and a time trend that we interpret as non-specific technical change.  We model these 

choices as the solution to the following problem  

max
𝑋

 𝜋 =   𝑝 ∙ 𝑌 − 𝒘 ∙ 𝑿  ; 𝑌 =  𝑓(𝑿, 𝒁, 𝒆, 𝑡);  𝑝 ≫ 0, 𝒘 ≫ 0 ,                  (1) 

where output is Y with price p, the variable input vector is X with corresponding price 

vector w, Z is s vector of quasifixed inputs, and the environmental variables are 

represented by vector e and non-specific technical change is t.  

The first order interior conditions for profit maximization are 

𝜕𝜋
𝜕𝑋𝑗

= 𝑝 ∙
𝜕𝑓(𝑿, 𝒁, 𝒆, 𝑡)

𝜕𝑋𝑗
− 𝑤𝑗 = 0, 𝑗 = 1, … , 𝐽                                                                        (1. 𝑎) 

From equations (1) and (1.a) the marginal impact of variable inputs, expressed in 

logarithms, is:  

𝜕 ln 𝑓(𝑿, 𝒁, 𝒆, 𝑡)
𝜕 ln 𝑋𝑗

=
𝜕𝑓(𝑿, 𝒁, 𝒆, 𝑡)

𝜕𝑋𝑗
∙

𝑋𝑗

𝑓(𝑿, 𝒁, 𝒆, 𝑡) = 𝛾𝑗 =
𝑤𝑗

𝑝 ∙
𝑋𝑗

𝑌
|

𝑿∗
= 𝑠𝑗                                    (2. 𝑎)    

with 𝑗 = 1, … , 𝐽 and where  𝛾𝑗  is the production elasticity of input j, which when evaluated 

at optimum input levels (X*) is its share in total revenue, 𝑠𝑗. Thus, under the conditions of 

this model, the production elasticity of input j is equal to the revenue share of that input, 

capturing the essence of the firm’s choice of input levels. The marginal effect on yields of 

changes in quasifixed inputs Zh that are measured in levels are semielasticities: 

𝜕 ln 𝑓(𝑿, 𝒁, 𝒆, 𝑡)
𝜕𝑍ℎ

= 𝜂ℎ                                              ℎ = 1 … 𝐻                                                          (2𝑏) 

by
 g

ue
st

 o
n 

A
pr

il 
9,

 2
02

4.
 C

op
yr

ig
ht

 2
02

3
D

ow
nl

oa
de

d 
fr

om
 



 5 

 

The marginal effect on yields of an environmental variable ev that is measured in 

logarithms is the elasticity:  

𝜕 ln 𝑓(𝑿, 𝒁, 𝒆, 𝑡)
𝜕𝑒𝑣

= 𝜇𝑣                                 𝑣 =  1, … , 𝑉                                                                (3. 𝑎) 

where ev is an environmental variable measured in logarithms. If the environmental 

variable is measured in levels rather than logs, the marginal effect can be expressed as the 

following semi-elasticity: 

𝜕 ln 𝑓(𝑿, 𝒁, 𝒆, 𝑡)
𝜕𝑒𝑢

= 𝜇𝑢                                                                                                                      (3. 𝑏) 

which is the change in logarithm of output (approximately the proportional change) per 

one-unit change in eu, whereas the elasticities in (3a) are standard elasticities 

(approximately the percentage change in yield per one percent change in ev).  

Different from the estimates in previous crop yield and state-level studiesi, our 

estimates of the impact of environmental variables are thus obtained from a model that 

controls for the simultaneous decisions made by the farmer given market prices as well as 

natural and technological conditions.  

The rate of technical change (TC) is: 

𝜕 ln 𝑓(𝑿, 𝒁, 𝒆, 𝑡)
𝜕𝑡 = 𝑇𝐶                                                                                                                     (4) 

According to its effects on relative input productivity, the nature of technical change can 

be further characterized in terms of input biases. The bias measure we use identifies 

change in optimal input share due to technical change, under constant prices, defined as: 

𝐵𝑗 =
𝜕𝑠𝑗

𝜕𝑡
     ∀  𝑗                                                                                                                             (5) 
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Technical change is said to be unbiased if all biases are zero, i.e., if it does not affect 

revenue shares. Hence, Hicks neutrality implies share neutrality. If 𝐵𝑗 > 0 the technical 

change is said to be biased toward input j, or j-using; if 𝐵𝑗 < 0 the technical change is 

said to be biased against input j, or j-saving.  

Equations (2), (3) and (4) indicate marginal effects on yields of inputs, 

environmental variables, and non-specific technical change, respectively.  To study the 

contributions of each of these factors to yield growth over a given period, we couple 

these marginal effects with observed changes in the amounts of these factors during the 

period in a growth decomposition à la Solow ii (1957) based on the total differential of 

the production function: 

𝑑 ln 𝑌    =  ∑ 𝛾𝑗 ∙ 𝑑 ln 𝑋𝑗

𝐽

𝑗=1

+ ∑ 𝜂ℎ ∙
𝐻

ℎ=1

𝑑 ln 𝑍ℎ + ∑ 𝜇𝑣 ∙
𝑉

𝑣=1

𝑑 𝑒𝑣 + ∑ 𝜇𝑢 ∙
𝑈

𝑢=1

𝑑 𝑒𝑢 + 𝑇𝐶                    (6) 

where the first and second right hand side terms are output growth attributed to changes 

in variable and quasifixed inputs, the third and fourth are changes attributed to 

environmental factors that can be measured in logarithms (ev) or in levels (eu), and the 

last is output growth attributed to non-specific technical change.  In our application 

below, we evaluate equation (6) for annual changes measured at the county level. 

 

 

3. Empirical Specification 

While Njuki, Bravo-Ureta, and O’Donnell (2018) estimate a state-level parametric 

stochastic frontier Cobb-Douglas production function for crops and livestock combined, 

and Chambers and Pieralli (2020) calculate a non-parametric deterministic production 

by
 g

ue
st

 o
n 

A
pr

il 
9,

 2
02

4.
 C

op
yr

ig
ht

 2
02

3
D

ow
nl

oa
de

d 
fr

om
 



 7 

frontier for crops and livestock combined, we opt to econometrically estimate a system of 

equations that estimates jointly the county-level crop production function and the inverse 

input demand equations (Christensen, Jorgenson and Lau, 1973) implied by equation 

(2a). This joint estimation allows for endogeneity of input choice and makes it obvious 

that output produced and inputs used are manifestations of a single decision-making 

process tempered by expectations about natural phenomena. The estimates of the 

environmental impact in (3a and 3b) control for the farmers’ behavior given expectations 

about these environmental factors (weather for example) and will, in general, be different 

from pure technical environmental responses measured on experimental plots.  

We chose the transcendental logarithmic (translog) functional form to represent 

the production function in (1) and the corresponding derived demand for fertilizer and 

chemicals as shares in (2a). This specification is flexible as it provides a local second 

order approximation to any production technology, minimizing a priori restrictions on its 

structure. After adding random errors (that we assume are contemporaneously correlated 

across equations suggesting the three stage least squares approach that we use later) the 

following system of equations is estimated: 

𝑦𝑖𝑡 = 𝛼0 + ∑ 𝛽𝑗𝑥𝑖𝑗𝑡

2

𝑗=1

+
1
2 ∑ ∑ 𝛽𝑗𝑠𝑥𝑖𝑗𝑡𝑥𝑖𝑠𝑡

2

𝑠=1

2

𝑗=1

+ 𝛿1 𝑍𝑖𝑡+ 
1
2 𝛿11𝑍𝑖𝑡

2 +
1
2 ∑ 𝛿𝑗𝑧𝑍𝑖𝑡𝑥𝑖𝑗𝑡

2

𝑗=1

+  𝜃1 𝑟𝑖𝑡

+   
1
2 𝜃11 𝑟𝑖𝑡

2 + 𝜃1𝑧𝑟𝑖𝑡𝑍𝑖𝑡 + ∑ 𝜔𝑤𝐷𝐷𝑖𝑤𝑡

3

𝑤=1

+  ∑ 𝜔𝑤𝑧𝐷𝐷𝑖𝑤𝑡𝑍𝑖𝑡

3

𝑤=1

+ ∑ 𝜔𝑟𝑤𝐷𝐷𝑖𝑤𝑡𝑟𝑖𝑡

3

𝑤=1

+ 𝜃2 𝑠𝑜𝑚𝑖𝑡 + 𝜃2𝑧𝑠𝑜𝑚𝑖𝑡𝑍𝑖𝑡 + 𝜏1 𝑡 +
1
2 𝜏2 𝑡 

2 + ∑ 𝜑𝑗𝑡𝑥𝑖𝑗𝑡

2

𝑗=1

+ 𝜑𝑧𝑡𝑍𝑖𝑡 + 𝜌𝑘 + 𝜆𝑗 + 𝜀𝑖𝑡 
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 8 

              (7) 

𝑠1𝑖𝑡
 = 𝛽1 + 𝛽11𝑥𝑖1𝑡 + 𝛽12𝑥𝑖2𝑡 + 𝛿1𝑧𝑍𝑖𝑡 + 𝜑1𝑡 +  𝜀1𝑖𝑡  

𝑠2𝑖𝑡
 = 𝛽2 + 𝛽21𝑥𝑖1𝑡 + 𝛽22𝑥𝑖2𝑡 + 𝛿2𝑧 𝑍𝑖𝑡 + 𝜑2𝑡 + 𝜀2𝑖𝑡 

 

where yit is logarithm of observed biomass yield Y (tons per hectare) in county i year t; xijt 

is a vector of the logarithms of quantity of fertilizer (for j=1) and chemicals (for j=2) 

applied per hectare; Zit is the fraction of agricultural land irrigated; rit is the logarithm of 

growing season precipitation in centimeters;  DDiwt is a vector of the number of degree 

days during the growing season in three temperature intervals, w=1,2,3; som is the 

logarithm of the level of soil organic matter in megagrams per hectare; k is a fixed effect 

for region k as compared to region 1, 𝑘 is the region in which the county is situated, with 

k = 2,3,4,5; 𝜆𝑖 is a fixed effect for county i as compared to Adams County, NE.  We 

exclude one county dummy per region to avoid singularity when combining county and 

regional fixed effects; 𝑠1𝑖𝑡
  is the share of fertilizer; 𝑠2𝑖𝑡

  is the share of chemicalsiii;  the 

variable t is year starting with 1960 = 1, a proxy for non-specific technical changeiv; and 

𝜀𝑖𝑡 are the error terms which are assumed contemporaneously correlated across equations.  

We do not include a derived demand (share) equation for irrigation because this variable 

represents a capital stock (share of cropland irrigated) rather than a variable input and is 

thus exogenous to the within-year decisions that we are examining here. 

The coefficients α0, β’s, ’s, ω’s, θ’s, τ’s, φ’s, ρ’s and 𝜆’s are the parameters to be 

estimated. We included all the interactions between variables that represent farmer’s 

choices of inputs (fertilizer, chemicals), the quasifixed input (irrigation ratio) and the 

technical change time trend. In addition, we account for the environmental variables (soil 
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 9 

organic matter, three intervals of degree days, and precipitation) that condition farmers’ 

choice, adding interactions of irrigation with precipitation, which allows us to examine 

how irrigation mitigates water stress and to account for the substitutability between them. 

We also add interactions of irrigation with degree-days, to study how irrigation mitigates 

heat stress; and of irrigation with soil organic matter, to examine the benefits of irrigation 

on different types of soils. We include regional and county fixed effects in equation (7) to 

capture the potential of omitted variables correlated with the regressors.   

Equality of coefficients across equations as well as symmetry were imposed 

during estimation while monotonicity was checked at each data point after estimation. 

Equations (7) were jointly estimated using an iterated three-stage least squares approach.  

Since the farmers make decisions about the desired yield and the amount of fertilizer and 

chemicals needed to produce it simultaneously, an instrumental variables approach was 

used to avoid endogeneity issues. For this purpose, indexes of prices of these inputs were 

used as instruments. Given that the interactions of the instrumented inputs, fertilizer, and 

chemicals, with themselves and with the other variables are also endogenous, instruments 

for these interactions were also created.v   

As Auffhammer et al. (2013) describes, for observations with ‘smaller spatial 

scales’ such as county level weather data, an acceptable level of randomness across time 

but a low level of variation across space is assumed. To overcome the potential of biased 

standard errors due to spatial correlation, we followed his recommendation and use a 

group bootstrap estimation procedure where years are resampled and replaced.  
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Since the Cobb-Douglas production function is nested in the translog production 

function, we use a Wald test to check if the former is as good as the latter in capturing 

this technology. 

 As established in equation (2a), the first derivative of the translog production 

function with respect to the logarithm of each input corresponds to the production 

elasticities 𝛾𝑖𝑗𝑡 that, given our assumptions of profit maximization and perfect 

competition, are equal to the factor shares 𝑠𝑖𝑗𝑡 for input j in county i in year t. These 

elasticities vary with time (t) and county inputs (i, j) in the following way:  

𝛾𝑖𝑗𝑡 =  ( 𝜕𝑦𝑖𝑡
𝜕𝑥𝑖𝑗𝑡

) = ( 𝜕𝑌𝑖𝑡
𝜕𝑋𝑖𝑗𝑡

) ∙ (𝑋𝑖𝑗𝑡

𝑌𝑖𝑡
) = 𝛽𝑗 + ∑ 𝛽𝑗𝑠𝑥𝑖𝑠𝑡 + 𝜑𝑗𝑡 

2
𝑠=1    . 

            

(8) 

The quasifixed factor zit is the fraction of cropland equipped for irrigation, which 

represents investment decisions taken before the seasonal production decisions.  In this 

case the impact of irrigation, equation (2b), is represented by the following semi-

elasticity: 

𝜂𝑖𝑡 =  (
𝜕𝑦𝑖𝑡
𝜕𝑍𝑖,𝑡

) = (
𝜕𝑌𝑖𝑡
𝜕𝑍𝑖,𝑡

) ∙ (
1

𝑌𝑖𝑡
)

= 𝛿1 + 𝛿11𝑍𝑖𝑡 + ∑ 𝛿𝑗𝑧𝑥𝑖𝑗𝑡 + 𝜃1𝑧𝑟𝑖𝑡 + ∑ 𝜔𝑤𝑧𝐷𝐷𝑖𝑤𝑡

3

𝑤=1

+ 𝜃2𝑧𝑠𝑜𝑚𝑖𝑡 + 𝜑𝑧𝑡 .   (9)
2

𝑗=1

 

For the impact of the natural environment, e, on yields, as per equations (3a) and (3b), 

elasticities or semi-elasticities are estimated, depending on how the variable is defined. 

The following semi-elasticities identify the marginal impact of degree days in county i in 

year t: 

𝜇𝑤𝑖𝑡 =
𝜕𝑦𝑖𝑡

𝜕𝐷𝐷𝑤
=   𝜔𝑤 + 𝜔𝑤𝑧𝑍𝑖𝑡  + 𝜔𝑟𝑤𝑟𝑖𝑡      𝑤 = 𝐷𝐷0030, 𝐷𝐷3035, 𝐷𝐷35               (10) 
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(15) 

while the soil carbon (SOM) and precipitation (r) elasticities are: 

𝜇𝑠𝑜𝑚,𝑖𝑡 = 𝜕𝑦𝑖𝑡
𝜕𝑠𝑜𝑚𝑖𝑡

=  𝜃2  + 𝜃2𝑧𝑍𝑖𝑡                                                                                               (11)  

and 

𝜇𝑟𝑖𝑡 =
𝜕𝑦𝑖𝑡
𝜕𝑟𝑖𝑡

= 𝜃1  + 𝜃11𝑟𝑖𝑡 + 𝜃1𝑧𝑍𝑖𝑡 + ∑ 𝜔𝑟𝑤𝐷𝐷𝑖𝑤𝑡

3

𝑤=1

                                                        (12) 

As indicated in equation (4), the first derivative of the production function with respect to 

the time trend t we interpret as the rate of technical change in county i in year t: 

𝜕𝑦𝑖𝑡
𝜕𝑡 = 𝑇𝐶 = 𝜏1 + 𝜏2 𝑡 

 + ∑ 𝜑𝑗𝑥𝑖𝑗𝑡 + 𝜑𝑧𝑍𝑖𝑡 
2

𝑗=1

.  (13) 

The biases in technical change (5) are: 

𝐵𝑗 = 𝜕𝑠𝑗

𝜕𝑡
=  𝜑𝑗 ,      ∀ 𝑗 .   (14) 

If 𝐵𝑗 
> 0 the technical change is input j using; if 𝐵𝑗 < 0 the technical change input j 

saving.  

The contributions of intensification, irrigation, environment and non-specific 

technical change to year-to-year yield changes for each county (i.e., yield growth 

decomposition) are obtained using equation (6) and equations (8)-(13):  

𝑑𝑦 =  ∑ 𝛾𝑗𝑑(𝑥𝑗)2
𝑗=1 + 𝜂𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑑(𝑍) + 𝜇0030𝑑(𝐷𝐷0030) + 𝜇3035𝑑(𝐷𝐷3035) +

𝜇35𝑑(𝐷𝐷35) + 𝜇𝑠𝑜𝑚𝑑(𝑠𝑜𝑚) + 𝜇𝑟𝑑(𝑟) +  𝑇𝐶                                                        

where for simplicity, we have omitted subscripts for time and county. This decomposition 

allows identification of the variables that have mattered the most in understanding the 

impressive crop yield increases in the U.S. central plains during the half century under 

study. 
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4. Data description 

Most of the variables used are unique to this analysis, in Appendix A we describe in 

some detail how we generated them. The units of analysis consist of 101 counties 

clustered along the 41st parallel North in the U.S. Midwest (Figure 1), examined over the 

period 1960-2008vi. This transect was chosen because it encompasses a diverse 800-mile 

agroclimatic gradient from the Rocky Mountains to the Mississippi River, including 

highly irrigated farms with low precipitation and moderate soil carbon in the west to rain-

fed crops with high precipitation and high soil carbon in the east. The range of conditions 

allows us the opportunity to identify the contribution of various environmental conditions 

and irrigation technology as well as farmer-chosen inputs to yield growth. After 

estimation of equations (7) we evaluate the estimated yield function at annual 

observations in each county and group them in five relatively homogeneous subregions 

from west to east. Basic statistics for the variables used are shown in Appendix Table A2, 

along with figures illustrating how yields, input use, irrigation technology, and 

environmental variables vary across the subregions. 

(Figure 1) 

The variables used in the estimation of the system of equations (7) are biomass 

yields, fertilizers, chemicals, share of land irrigated, soil organic matter, a time trend, 

temperatures, and precipitation. Fixed effects are included for subregions and counties. 

Labor and machinery are not included due to a lack of data at county level for crops. 

Although crop yield response studies do not usually include these variables, studies of 

aggregate crop and livestock agricultural productivity do. USDA (ERS, 2017) reports that 
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for the period 1960-2004 the annual growth rate of labor in these states has been 

approximately -1.6% and the growth rate of capital (excluding land) has been 

approximately -0.23%. 

 To calculate average county biomass yield we sum the biomass produced by all 

crops in a county, measured in bone-dry megagrams (Mg), then divide that by total 

hectares plantedvii. The biomass produced includes both the harvested crop and the 

residual above-ground biomass left in the field that is potentially available for harvest by 

grazing or as biomass stock. Hence, we are examining a more complete measure of 

production than just the harvested portion of any individual crop. We use biomass yield 

for several reasons. Because it is closely related to the concept of net primary production 

(NPP) used by many physical scientists in studies of weather and climate impacts and to 

the global carbon balance (Prince et al., 2001), our results are relevant to those areas of 

study.  Also, these “residuals” have value for livestock grazing and potentially as 

feedstock for cellulosic bioenergy and plasticsviii. Appendix Figures A1 and A2 in show 

this biomass yield by county (average 1960-2008) and by year (per region) respectively.  

Across the region, average yields increased about 124% from 1960 to 2008, for an 

average compound rate of 1.66%. This aggregate yield increase masks substantial 

variation by subregion: in subregions 2 and 3 with their increases in irrigation, yields 

increased by 190%, compared to 96% in the more humid eastern subregion.  

Factor intensification is measured by the amount of fertilizers and chemicals used. 

Those variables are under farmers’ control. Irrigation technology is not under farmers’ 

control within the annual observation period. Environmental variables, not under farmers’ 
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control, are soil organic matter, precipitation, and temperatures. Non-specific technical 

change, which we represent with the passage of time, is certainly under human control.   

Fertilizer and chemical inputs are expressed as indexes of quantity applied per 

hectare. These are obtained using expenditures from the Census of Agriculture and state-

level price indexes from USDA (ERS, 2017) productivity accounts. They are expressed 

as indexes relative to the quantity used in Adams County, Nebraska, in 1960. Average 

levels by county are shown in Appendix A. Shares of fertilizer and chemicals are 

obtained by dividing expenditures by value of production. 

Irrigation we express as the share of irrigated land in each county.  This was 

calculated as the ratio of the area of irrigated land planted to crops to the area of all land 

planted to crops, from USDA NASS.  While it would have been desirable to use quantity 

of water actually applied, this information is not available. The simple measure that we 

use has a useful interpretation: its parameter estimate is an approximation of the increase 

in biomass yield for irrigated relative to non-irrigated production. As illustrated in 

Appendix Figure A6, the percentage of irrigated land varies considerably across the 

transect, with higher values in the center of Nebraska and zero values in Iowaix. 

To account for the differences in soil quality across space and time, we include 

average megagrams (Mg) of soil organic matter (SOM) per hectare for each county from 

Lakoh (2013) and Liska et al. (2014). As illustrated in Appendix Figure A7, we observe 

increasing quantities of SOM as we move from west to east and decreasing levels through 

time. The average value of SOM for region 1 (west) was 94 Mg ha-1, while for region 5 

(east) it was 183 Mg ha-1.  
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County-level weather variables (temperatures in degree-days and precipitation in 

centimeters) were estimated from individual weather station data collected from the 

United States Historical Climatology Network. From these data, county average daily 

precipitation and county average daily maximum and minimum temperatures were 

obtained for each day during the growing season (March to August). County-level values 

for precipitation and temperatures were constructed as the weighted average of 

observations from the five closest weather stations to the center of each county. These 

observations were weighted using a Shephard inverse distance approach as follows: 

𝑞𝑘 = ∑ 𝑏𝑖𝑘 𝑞𝑖
∑ 𝑏𝑗𝑘

 5
𝑗=1

  ,   where  𝑏𝑖𝑘 = 1
𝑑𝑖𝑘

2                                                                      (16)      5
𝑖=1   

where qk denotes the weighted value for county k, qi is the measurement at weather 

station i, and dik is the distance from weather station i to the center of county k. Daily 

averages at county level were then used to construct the growing season precipitation and 

degree days variables for each county, explained further in the next paragraph.  

To measure the impact of temperatures on yield we use an adaptation of the 

agronomic measure “growing degree days”. We measure the amount of time, expressed 

in 24-hour days, the crop is exposed to temperatures in one of three ranges: 0ºC to less 

than 30ºC; 30ºC to less than 35ºC; and 35ºC or higher. In Appendix A we describe in 

more detail how these variables were constructed from weather reporting stations in each 

county. The average amount of time crops were exposed to temperatures above 35ºC by 

county is illustrated in Appendix Figure A8. This measure of high temperatures mostly 

increases from east to west. 

We measure precipitation as the total amount of precipitation during the growing 

season measured in centimeters. As shown in Appendix Figure A9, there is a substantial 
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decrease in average precipitation as we move from east to west. Region 1, in the west, 

received an average of 30.8 cm, while in region 5, in eastern Iowa, the average 

precipitation was almost twice that much, 59.1 cm.  Finally, we represent non-specific 

disembodied technical change with a year variable, t, based on 1960=1x.  

 

5. Results and discussion 

We estimated the parameters in the system of equations (7) using Iterated 3-Stage Least 

Squares (I3SLS). Eighteen of the twenty-nine parameters (not including the fixed effects) 

estimated in the system of equations (7) are significantly different from zero at the 99% 

confidence level, three are different from zero at the 95% confidence level and one at the 

90% confidence level. The pseudo-R squared is 0.846.  This standard goodness of fit 

measure provides a useful indication of the overall predictive power of the estimators 

although it cannot be explicitly interpreted as the proportion of the variance explained 

when estimating a three-stage least squares system of equations as we do (Toft and 

Bjørndal, 1997). A Wald test rejects the nested Cobb-Douglas form as a better 

specification. The Wald test on the 𝛽𝑗𝑘 coefficients equal to zero (∀ 𝑗, 𝑘 ) rejects the 

hypothesis that all the inputs are additively separable, and strongly separable (∀ 𝑗 ≠ 𝑘), 

indicating that the translog specification is preferred to a Cobb-Douglas specification. A 

Wald test on the 𝜑𝑗 coefficients equal to zero rejects the hypothesis of Hicks neutrality. 

To account for spatial correlation, we follow Auffhammer et al. (2013) and use 

a grouped bootstrap methodology for the estimation of the standard errors. 

Additionally, we estimated the system using standard 3SLS to check for robustness of 

results and found minimal qualitative changes in the significance of the estimated 
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parameters except for the significance of the county dummies. The Wu-Hausman 

endogeneity test on fertilizer and chemicals rejected the null hypothesis that these 

variables are exogenous, thus we instrumented these variables and their interactions using 

price indexes. Parameter estimates are presented in Appendix Table A3.   

We used the parameter estimates and observations to estimate elasticities and 

semi elasticities of fertilizers, chemicals, irrigation, soil organic matter, weather, and a 

time trend to represent technical change using equations (8)-(13). These were evaluated 

at each data point, then averaged across observations within each of the five regions of 

interest. They are reported in Table 1.  

(Table 1) 

The estimated average production elasticity of fertilizer (0.112) for the entire 

region is consistent with previous estimates by Griliches (1964), Hayami and Ruttan 

(1970), Antle (1983) and Saha, Shumway and Havenner (1997).  The estimated 

production elasticity of chemicals (0.058) is virtually identical to the 0.057 estimated by 

Ball (1985). On average, our elasticities indicate that a 1% increase in fertilizer increased 

biomass yield by 0.11% and a 1% increase in chemicals resulted in a yield increase of 

approximately 0.06%.   

The transect-wide estimate of the irrigation semi-elasticity (1.577) implies that 

predicted yield with and without irrigation increases by 158%. García-Suárez, Fulginiti 

and Perrin (2018) estimate irrigation semi-elasticity for the entire High Plains aquifer 

region at 0.511 (that study includes counties over the aquifer from South Dakota to 

Texas). Part of the benefit of irrigation is achieved by reducing the impact of high 

temperatures, as indicated by the impact of irrigation on the DD35plus semi-elasticityxi.  
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Soil organic matter (SOM) has been declining since cultivation began on these 

prairie soils. We estimate its average marginal elasticity at 0.054, but it is not 

significantly different from zero. Calculated regional SOM elasticities ranged from 0.11-

0.13 in the central regions to 0.003 in the east.  

On average, an extra 24 hours (one day) of temperatures above 35C decreased 

yields by 25.6%, while the marginal effect of an extra day between 30C and 35C would 

decrease yields by only 2.7%, an important result that supports similar estimates in the 

literature. For example, we can compare our results with other studies of similar scope 

focused on just weather effects. Schlenker and Roberts (2009) and Roberts, Schlenker 

and Eyer (2012) find similar impacts of temperatures up to 30ºC, but above this 

threshold, they estimate yield reductions of only 6% and 6.2%, respectively, for each day 

of exposure. These two studies focused on corn and soybean yields in rainfed counties in 

the U.S. east of the 100th meridian. A more recent study by Burke and Emerick (2016) 

finds that exposures of corn to temperatures above 29ºC produce decreases of 0.44%-

0.56%, depending on the model, for each one degree increase above this threshold.xii 

In the east, the comparable negative impacts of the two ranges of high 

temperatures rise to 39.9% and 3.3%, while in the irrigated regions of the west (regions 1 

and 2) they fall to 6.8% and 2.9% respectively. If we disaggregate 1960-2008 trends in 

heat sensitivity estimates by region, results are not homogeneous. Regions in the west 

(regions 1 and 2) saw a considerable decrease in sensitivity with marginal damage 

decreasing from 14.1% to 1.9% when comparing the 1960s to the 2000s, mainly due to 

increased irrigation. Region 4, which has low irrigation, saw a much smaller decrease 

from 35.9% to 32.5% during the same period. Region 5, which has no irrigation, saw an 
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increase in the marginal damage from 39.5% to 40.9% during the same period. Ortiz-

Bobea, Knippenberg and Chambers (2018) and Chambers and Pieralli (2020) also find 

increased weather sensitivity in rainfed agricultural areas in the U.S., in particular in the 

Midwest region.  Our estimates additionally indicate that irrigation is a successful means 

to reduce heat stress, consistent with findings in Kukal and Irmak (2018).  

A marginal increase of 1 cm (0.39 inch) of precipitation along this transect would 

on average decrease yieldsxiii by 9.8%. This average response again masks geographical 

and temporal variations. For example, in the west (region 1), an additional centimeter of 

precipitation would increase yields on average by 10.2%. During the wettest decade (the 

90s) the region-wide response to an additional centimeter was -14.2%, while during the 

driest decade (the 70s) the response was -6.7%.  

 The estimated time trend, our proxy for unidentified, non-specific technical 

change, increased yield by an average of 0.9% per yearxiv. This variable can be 

interpreted as capturing the trend in marginal effects of unidentified changes in yield 

from innovations such as variety improvement, higher quality and quantity of machinery 

and labor, improvements in management, and similar technology variables for which we 

have no data available at the level of county agriculture. The negligible and insignificant 

coefficient estimate for the variable time squared (0.00005) indicates that, ceteris paribus, 

the 0.9% annual rate of improvement remained stable over the time period. In terms of 

the biases in technical change, we find it to have been irrigation saving (with a cross-

coefficient of -0.001), and fertilizer and chemicals using (cross-coefficients of +0.0008 

and +0.0004, respectively), which means that other things equal, the ratio of irrigation to 

fertilizer and chemicals would fall as technology advances. We note, however, that 

by
 g

ue
st

 o
n 

A
pr

il 
9,

 2
02

4.
 C

op
yr

ig
ht

 2
02

3
D

ow
nl

oa
de

d 
fr

om
 



 20 

despite the technical change bias against irrigation, the share of land that is irrigated 

increased by about 30% over the 1960-2008 period, due to complementarities with other 

inputs, and it would have increased even faster had technological change not been biased 

against it.  

 

Contributions of human controlled factors to yield change during 1960-2008 

 We use our estimates of regional and transect-level elasticities and semi-

elasticities to decompose the observed yield change, 1960-2008, into contributions from 

intensification, irrigation, soil organic matter, weather, and nonspecific technical change 

(using equation 15, page 12) xv.   

Estimated human-controlled contributions to yield change for 1960-2008 are 

shown by region in Figure 2, indicating that human-controlled factors explain most of the 

overall change in observed yields during this half-century. Estimated contributions across 

the transect by decade are shown in Figure 3. 

 

(Figures 2 and 3) 

Increases in irrigation over this period contributed to yield increases of 33%, 74%, 68% 

and 18% in regions 1, 2, 3, and 4 but had no contribution to yield growth in 5 because 

irrigated areas were virtually non-existent. Across the 41st || transect, irrigation 

contributed an average yield increase of about 26%. Most of these increases in irrigation 

occurred during the first two decades, as indicated in Figure 3. Intensification in the form 

of higher fertilizer and chemical use per hectare contributed to yield increases of about 

13% and 11%, respectively, across the 41st || transect (Figure 2), with most of this 

by
 g

ue
st

 o
n 

A
pr

il 
9,

 2
02

4.
 C

op
yr

ig
ht

 2
02

3
D

ow
nl

oa
de

d 
fr

om
 



 21 

occurring during the 1960s and 1970s (Figure 3). The fertilizer contributions occurred 

almost exclusively during the 60s, while chemical contributions continued throughout the 

1960-2008 period. Regions 1, 2 and 3 show higher contributions of fertilizer than do 

regions 4 and 5, consistent with the increases in irrigation, as they are complementary 

inputs. It is notable from Figure 3 that the contributions of fertilizer and chemicals to 

yield growth occurred almost completely between 1960 and 1990. This is an encouraging 

finding, given the recent National Academy of Science (2021) study expressing concern 

about the potential pollution impacts of the fertilizer increases that might be necessary to 

feed the growing world population.  

As we noted earlier, the nature of the studies by Chambers and Pieralli (2020), CP 

hereafter, and by Njuki, Bravo-Ureta, and O’Donnell (2018), NBO hereafter, differ 

markedly from ours in that they consider causes of growth in the entire U.S. agricultural 

sector during 1969-2004 (all crops and livestock products combined) and they use state-

level data. It is useful to compare their decompositions of causes of growth with our 

results for just aggregated crop yields along a more homogeneous transect of the Great 

Plains.  Considering the simple average of the results of their studies for the four states in 

our study, their estimates of 1960-2004 changes in output due to technical change were 

69% in NBO and 54% in CP compared to our 53%. These are more similar than we 

would have anticipated given the empirical differences in geographic and commodity 

scope. Finally, the estimated contributions of changes in inputs for the four states 

averaged NBO +31%xvi and CP +1.4% versus our +50% (irrigation, chemicals and 

fertilizer). These differences may at first be surprising, but conceptually they are different 

because we do not include all inputs in our study. Had we been able to include quantities 
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of labor and capital per area of crop production at the county level, we would likely have 

found them to have decreased, which would have reduced our estimate of the 

contribution of input changes to yield change.  

Our results show that technological change contributed somewhat more to the 

yield gains in the two eastern subregions (Figure 2), where there was no prospect for 

increases from irrigation, and little incentive to increase rates of application of fertilizer 

and chemicals. What does this unspecified technological change consist of?  In a widely 

cited summary of growth in maize yields, Duvick (2005) notes that yield per plant has 

been nearly constant, but technological progress has allowed more plants to be grown per 

hectare, due to genetic changes along with complementary advances in management, 

chemicals and machinery. Duvick expresses confidence that similar gains will continue 

for at least a few decades, The future path of this non-specific technical change remains a 

crucial issue that we do not explore further in this study. 

 

Contributions of environmental factors to yield change during 1960-2008. 

 At the aggregate level across the 41st || transect, environmental factors have 

contributed to a yield change of only about -0.7% in 1960-2008. This includes a negative 

impact of -0.5% due to a depletion of soil organic matter (SOM) and a small negative 

impact of -0.2% due to weather as we have measured it (Figure 4). CP also find a 

negligible weatherxvii contribution of -1.76%, on average for the states in our analysis. 

Similarly, NBO report negligible average annual weather contributionsxviii of 0.016% 

(0.72% cumulative contribution) for the same states. Both NBO and CP comment on the 
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heterogeneity of weather responses across states and therefore suggest the desirability of 

a more local analysis, as we have provided in this study. 

Geographically, a positive contribution of precipitation change in region 1 (4.4%) 

was partially offset by negative contributions of precipitation change in regions 2, 3, 4, 

and 5 where it was a little too wet by the end of the period of analysis. The aggregate 

outcome also masks some significant variations in temperature contributions through 

time. For example, an increase in very hot weather (temperatures over 35C) contributed 

to a positive 7-9% yield increase in regions 1 and 2, while it reduced yields 6-9% in 

regions 3 to 5 (Figure 5). An increase in 35C+ days across the transect during the 1980s, 

the warmest decade, contributed a 7% decrease in transect average yield, only to have 

half of that offset by yield increases due to a reduction in such days in the 1990s and 

2000s. Note from Figure 4 that the net weather contributions were more dramatic in 

region 1 (the west) than elsewhere, due to net weather improvements in that region over 

the period.  An important insight here for examining the impacts of weather is that 

aggregate data (i.e. for the 41st ||) do not reveal the very real impacts of changes in 

weather at the subregion level, because these impacts tend to be canceled out across 

areas. But analysis of aggregate relationships using local data, as we have done here, can 

reveal the marginal responses to local weather and the muted aggregate responses as well.  

 

(Figure 4 & 5) 

 

The final environmental variable we considered was soil organic matter (SOM).  

The data revealed a steady reduction of SOM through time and a steady reduction across 
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space from east to west. For the full 41st || transect across the entire period, changes in 

yield due to changes in SOM were small – an average SOM reduction of about 15.7% 

resulted in a biomass yield reduction of about 0.5%.  While these effects of soil organic 

matter loss through time were small, differences in SOM levels of 182 Mg/ha in the east 

versus 100 Mg/ha in the west account for a yield difference of as much as 8%.  

 

6. Conclusions 

This research examined crop biomass yield growth during 1960-2008 on an 800-mile 

transect of the Great Plains along the 41st parallel North, between the Rocky Mountains 

and the Mississippi River, to determine the relative contributions of natural factors and 

human factors to this growth. The range of agroecological conditions along this transect 

is large, with potential implications for crop yield growth in other temperate zone 

producing regions. Rather than focus on specific crops, we measured county yield as the 

entire above-ground amount of biomass produced by all crops combined divided by total 

area in those crops, in accord with the ecological notion of net primary agricultural yield.  

 In order of importance, on average across counties, our estimates of contributors 

to the transect-wide half-century yield increases are these: non-specific technical change 

+53%, irrigation +26%, fertilizer +13%, chemicals +11%. Weather changes contributed 

to a decrease in yields of just -0.2%, while reductions in soil organic matter contributed 

to a decrease in yields of -0.5%.   

 While technical change was the main source of yield growth in every sub-region, 

the contributions of the remaining factors of production vary substantially across sub-

regions. Increased area under irrigation was more important than technical change for the 

by
 g

ue
st

 o
n 

A
pr

il 
9,

 2
02

4.
 C

op
yr

ig
ht

 2
02

3
D

ow
nl

oa
de

d 
fr

om
 



 25 

central high plains (regions 2 and 3), where it produced increases in average yields of 

74% and 68%, respectively. In the east, where irrigation is virtually nonexistent, greater 

use of fertilizer and chemicals were the second most important reasons for yield growth, 

each of which contributed yield increases of about 10%. Notably, most of these latter 

increases occurred during the first half of the period, providing some optimism for the 

possibility that the yield increases needed to feed future world population growth may be 

achieved with smaller increases in fertilizer and chemical pollution than some have 

feared. 

  Losses of soil organic matter through time made a very small average contribution 

to yield reductions of about -0.5% across the entire transect, but about -1.3% in region 3. 

Furthermore, regional differences in average SOM levels of 182 Mg/ha in the east versus 

100 Mg/ha in the west account for a yield difference of about 8%.  

 We find that the dramatic biomass yield increases along this transect during this 

time period were almost entirely attributable to human-controlled interventions rather 

than environmental changes. The fraction of crop area irrigated in the western half of this 

transect increased dramatically between the 1960s and 2000s, from about a quarter of all 

cropland to about half. This increased yields by about 58% in those subregions, but 

increased the average yield for the entire transect by only about 26% because of the 

absence of irrigation in the east. Intensification, in terms of additional quantities of 

fertilizers and chemicals, contributed to yield increases of about 23%, but in the last 

decade the contribution declined to less than 2%, except in region 2 where application 

rates continued to increase. Our results offer some empirical basis for evaluating 

simulation studies of world food production such as that by Johnson, et al (2016), who 
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assumed that intensification of existing crop area would increase yields by 50-90% and 

that extensification to natural areas would cause those areas to lose 25% of their soil 

carbon. 

The small environmental contributions to yield growth along this 41st|| transect  

do not imply that temperature and precipitation had no marginal impacts: yield response 

to changes in precipitation and temperatures above 35C were quite large. The small 

weather contributions to yield growth over the half-century are due to the fact that there 

was very little net change in weather between the beginning and end of the period, even 

though the marginal effects of precipitation and temperature are quite significant. It is 

notable, however, that the sensitivity of biomass yield to the amount of time exposed to 

temperatures over 35C increases from the west where the response  is -4.3, to the east 

where it is -40. This is consistent with the estimated impacts of irrigation in reducing heat 

stress.  

 What do our results portend for yield growth during the coming decades?  

Projections of climate change (U.S. Global Change Research Program, 2017, 2018) in 

this region, due to increased atmospheric CO2, suggest that periods of hot weather might 

increase by 10% in this area, which would decrease average biomass yields by -2.6%. 

This decrease might be partially offset by the increase in yields predicted from the CO2 

fertilization effect suggested by experimental data and by some aspects of farmer 

adaptation (like changes in planting and harvesting dates). Projections of precipitation 

change along this 41st || transect are roughly neutral, but a decrease would decrease yields 

in the west, while it could increase yields in the east. The potential for further expanding 

the irrigated area to increase average yield is minimal, given concerns about the 
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sustainability of groundwater supplies. For both environmental and economic reasons, 

there is little prospect that fertilizer and chemical applications will increase. Our results 

also indicate that along this transect the yield growth rate from non-specific technical 

change has stabilized at around 1% per year. Our research does not predict the future path 

of yields along this transect, but we must hope for continued or accelerating technological 

advances if the region is to contribute its share of needed increases in agricultural output. 
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Tables 
 

Table 1. Estimated average transect-wide marginal effects of variables on biomass yield, by 
region* 

Variable Type of response 

Region 

41st || 1 2 3 4 5 

Fertilizer, quantity index elasticity 0.112 0.102 0.123 0.119 0.108 0.111 
Chemicals, quantity index elasticity 0.058 0.048 0.046 0.052 0.062 0.066 
Irrigation ratio, 0-1 semi-elasticity 1.577 1.203 1.229 1.124 1.818 1.941 
Time trend, years semi-elasticity 0.009 0.008 0.008 0.008 0.009 0.009 
Soil organic matter, Mg/ha elasticity 0.054 0.083 0.115 0.124 0.023 0.003 
DD0030, days semi-elasticity 0.001 0.001 0.002 0.002 0.001 0.000 
DD3035, days semi-elasticity -0.027 -0.040 -0.019 -0.011 -0.031 -0.033 
DD35plus, days semi-elasticity -0.256 -0.043 -0.093 -0.127 -0.343 -0.399 
Precipitation, cm elasticity -0.098 0.102 0.006 -0.023 -0.130 -0.212 
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Figures captions: 
 
Figure 1.  Study counties along the 41st parallel North, U.S. Great Plains 
 
Figure 2. Human-controlled contributions to crop yield change along the 41st parallel 
North, by region, 1960-2008 
 
Figure 3. Human-controlled contributions to crop yield change along the 41st parallel 
North, by decade, 1960-2008  
 
Figure 4. Weather contributions to crop yield change along the 41st parallel North, by 
region, 1960-2008 
 
Figure 5. Contributions of temperatures above 35C to crop yield changes along the 41st 
parallel North, by decade and region, 1960-2008 

 
 
 

 
 
 
 

 
i Njuki, Bravo-Ureta, and O’Donnell (2018) estimate a state-level stochastic Cobb-Douglas production 
function for crops and livestock combined. Chambers and Pieralli (2020) use a programming technique to 
fit a nonparametric and deterministic technology to state-level data for crops and livestock combined. Both 
use a state-level data set developed by USDA (ERS, 2017), then obtain state and regional estimates of the 
technology by evaluating the general model using state-level variables. 
ii Our productivity decomposition is exactly like that in Solow (1957). He also includes a time trend that he 
defines as “The variable t for time appears in F to allow for technical change” (page 312, after equation 
(1)). It captures exogenous neutral disembodied technical change at a constant exponential rate as also 
stated by Solow on page 313 “… then A(t) = eat or in discrete approximation A (t) (I + a)t…”.   
iii We have included only share equations for fertilizers and chemicals because we lack county-level 
information on labor, and capital used exclusively on crops. Other studies have used state-level indexes 
developed by USDA (ERS, 2017) for crops and livestock combined.   
iv In Solow’s calculations of his Table 1 there is no estimation as he approximates marginal products by 
prices so the calculations are nonparametric and nonstochastic and the only way to obtain the shift of the 
production function through time is by obtaining a residual. When econometrically estimating the shift, we 
have an opportunity to include a time trend to capture it as in his equation (1), then add an error term to 
capture the stochastic nature of the econometric approach. 
v Reg3 command in STATA version 16.0 was used for the econometric estimations.  
vi Counties by sub-region are listed in Appendix Table A1. 
vii A reviewer has pointed out that we do not have any measure of whatever biomass may have been 
produced on land that was planted but not harvested. Excluding this amount would result in an 
underestimate of biomass yield per planted acre. We note, however that the ratio of harvested to planted 
area across our sample was 95%, so we surmise that any such underestimate has not affected our 
conclusions. Schlenker and Roberts (2009) found that “results are very similar” whether they used yield per 
planted acre or yield per harvested acre in an analysis of county-level yields of corn, soybean and cotton. 
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viii One priority of the U.S.Department of Energy is to support the development of cost-effective strategies, 
technologies, and systems to sustainably harvest and deliver volumes of biomass feedstock :   
https://www.energy.gov/eere/bioenergy/feedstock-supply . 
ix Given the minimal levels of irrigation present in Iowa, USDA (ERS, 2017) does not report the amount of 
planted land that was irrigated. 
x Some of the technical change not captured by this exogenous time trend or by changes in embodied 
technical change in the inputs could be captured by the residual added in the econometric estimation. If 
there are climatic trends not captured by the variables we use (degree days and precipitation) the time trend 
could be capturing some of this information, particularly if these trends are monotonic. But if there are 
common trends in the variables the inclusion of a time trend is essential as it detrends the series and allows 
for more efficient estimation. 
xi The parameter of the interaction term between irrigation and DD35plus is statistically significant and 
equal to 0.452.  
xii Fisher et al (2012) in a comment correcting Deschenes and Greenstone (2007) who use county level data 
for the whole U.S. also find substantial negative impact of hot weather on corn yields, soybean yields and 
profits although “…the impacts are smaller in magnitude than earlier estimates…” (page 3755, first 
paragraph). A response by Deschênes and Greenstone (2012) acknowledges that once data and coding 
errors were corrected they also find a significant negative effect of weather on yields and profits with the 
effects on profits small because they are “…more amenable to adaptation even in the short run...”  
xiii This somewhat surprising result is completely consistent with Tannura, et al (2008), whose estimates for 
corn in Iowa, Illinois and Indiana indicated optimum monthly precipitation levels were close to the average 
levels. 
xiv Njuki, Bravo-Ureta & O’Donnell (2018) using state-level data estimate a 1.2% growth rate for the  
aggregate (crops plus livestock) U.S. agricultural sector during 1960-2004. 
xv To calculate year-to-year contributions of each factor (fertilizer, chemicals, soil organic matter, 
precipitation) measured in logarithms, we multiply the change in the log of the input times the average 
production elasticity of that input between two consecutive years. For factors (irrigation, time, degree days) 
measured in levels, we multiply the change in the level of the input times the average production semi-
elasticity of that input between two consecutive years. 
Changes between period t1 and tN are estimated as: [(1 + mean change in factor of interest)N ] - 1. Log 
changes are converted to percentage changes using the equation: percent change in y = exp(dlny)-1.   
xvi Our calculation. For each of the four states in our study between 1960 and 2004, using their equation (5), 
their estimated parameters and the USDA (ERS, 2017) 1960 and 2004 input values.  We report the simple 
average for the four states. 
xvii They capture weather using two variables, state-level observations on degree days between 8C and 
30C between March and August, and inches of precipitation during the same period. 
xviii Their environmental index includes four variables, state-level averages of growing season temperature 
and cumulative precipitation and intra-annual standard deviations from daily temperature and precipitation; 
adjusted for seasonality. 
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