Appendix C: Hypothesis tests on coefficients of model in eq. (5b)

We performed multiple statistical tests on the coefficients of the LGA interactions $\delta_{k}^{L G S A}$ from the model in eq. (5b).

First, we test the hypothesis that all coefficients of treatment interaction terms $\delta_{k}^{L G S A}$ with $k=2,3,4$, 5, 6-8, and 9+ participants are equal to zero based on F-test. Based on the results, we reject the null hypothesis that the respective coefficients are jointly equal to zero at conventional levels of statistical significance (see Table C1).

Second, we conduct a t-test to check whether the coefficients $\delta_{k}^{L G S A}$ are pairwise $\left(\delta_{k}^{L G S A}=\delta_{l}^{L G S A}\right.$ with $k \neq l$) significantly different from each other. Based on the results, we find that the coefficient estimates for LGSA auctions with 2, 3, 4, and 5 participants differ significantly from the coefficient for LGSA auctions with 9+ participants at least at the 5\% level, and that the coefficients for LGSA auctions with 3,4 , and 5 participants differ significantly from the coefficient for 6-8 participants at least at the 10% level.We also find that the coefficients for $2,3,4$, and 5 participants do not differ significantly from each other at conventional levels of statistical significance (see Table C2).

Third, we conduct multivariate one-sided tests (Wolak 1987; Silvapulle and Sen 2001) to test whether the coefficients for $2,3,4$, and 5 participants are smaller than $(<)$ the coefficients for 6-8 and $9+$ participants, respectively. Following Vanbrabant and Rosseel (2020), we implement a two-stage testing procedure. For $\delta_{9+}^{L G S A}$, based on an F-test, the first step tests

$$
\begin{aligned}
& H_{0}: \delta_{2}^{L G S A} \leq \delta_{9+}^{L G S A} ; \delta_{3}^{L G S A} \leq \delta_{9+}^{L G S A} ; \delta_{4}^{L G S A} \leq \delta_{9+}^{L G S A} ; \delta_{5}^{L G S A} \leq \delta_{9+}^{L G S A} \text { versus } \\
& H_{1}: \text { at least one inequality is violated. }
\end{aligned}
$$

Not rejecting H_{0} would allow equalities; in this case, the second step tests

$$
\begin{aligned}
& H_{0}: \delta_{2}^{L G S A} ; \delta_{3}^{L G S A} ; \delta_{4}^{L G S A} ; \delta_{5}^{L G S A}=\delta_{9+}^{L G S A} \text { versus } \\
& H_{1}: \text { at least one equality is violated. }
\end{aligned}
$$

Test results from the first step cannot reject the null hypothesis that all restrictions hold ($\bar{F}^{1}=0, p=$ 1, see Table C3). Based on the results of the second step, we reject the null hypothesis that all restrictions are equalities $\left(\bar{F}^{2}=15.448, p=0.0017\right)$. For $\delta_{6-8}^{L G S A}$, we conduct the test analogously (see Table C4).

Fourth, following Vanbrabant and Rosseel (2020), we test whether the data support the orderconstrained hypothesis that the price differences between the sellers are decreasing with an increasing number of participants, i.e., $\delta_{2}^{L G S A}<\delta_{3}^{L G S A}<\delta_{4}^{L G S A}<\delta_{5}^{L G S A}<\delta_{6-8}^{L G S A}<\delta_{9+}^{L G S A}$. The first step tests
$H_{0}: \delta_{2}^{L G S A} \leq \delta_{3}^{L G S A} \leq \delta_{4}^{L G S A} \leq \delta_{5}^{L G S A} \leq \delta_{6-8}^{L G S A} \leq \delta_{9+}^{L G S A}$ versus
H_{1} : at least one inequality is violated.

Not rejecting H_{0} would allow equalities; in this case, the second step tests

$$
\begin{aligned}
& H_{0}: \delta_{2}^{L G S A}=\delta_{3}^{L G S A}=\delta_{4}^{L G S A}=\delta_{5}^{L G S A}=\delta_{6-8}^{L G S A}=\delta_{9+}^{L G S A} \text { versus } \\
& H_{1}: \text { at least one equality is violated. }
\end{aligned}
$$

The restricted model adjusts for the violation of the order-constrained hypothesis by forcing $\delta_{2}^{L G S A}$ to be smaller than or equal to $\delta_{3}^{L G S A}$. The results from the first step show that the order-constrained hypothesis is not rejected in favour of the unconstrained hypothesis ($\bar{F}^{1}=2.6977 p=0.5105$, see Table C5). Based on the results from the second step ($\bar{F}^{2}=18.497, p=0.0001$), we can reject the null hypothesis that all restrictions are equalities, i.e., the data support the constraints and impose only minor changes on the coefficient estimates of the model in eq. (5b).

References

Silvapulle, Mervyn J., and Pranab K. Sen. 2001. Constrained Statistical Inference. Hoboken, NJ, USA: John Wiley \& Sons, Inc.

Vanbrabant, Leonard, and Yves Rosseel. 2020. "An Introduction to Restriktor: Evaluating Infromative Hypotheses for Linear Models." In Small Sample Size Solutions: A Guide for Applied Researchers and Practitioners, 157-72. European Association of Methodology series. London, New York: Routledge.

White, Halbert. 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity." Econometrica 48 (4): 817-38.

Wolak, Frank A. 1987. "An Exact Test for Multiple Inequality and Equality Constraints in the Linear Regression Model." Journal of the American Statistical Association 82 (399): 782-93.

Table C1 F-test

Hypothesis:							
$H_{0}: \delta_{2}^{L G G A}=\delta_{3}^{L G S A}=\delta_{4}^{L G S A}=\delta_{5}^{L C S A}=\delta_{6-8}^{L G S A}=\delta_{9+}^{L G S A}=0$							
$H_{1}: \delta_{k}^{\text {LGSA }} \neq 0$ for at least one $k=2,3,4,5,6-8,9+$							
Res. DF					DF	F-Value	$\operatorname{Pr}(>\mathrm{F})$
1	1468						
2	1462	6	$20.209 * * *$				

Note: Asterisks indicate $* \mathrm{p}=<0.1 ; * * \mathrm{p}=<0.05 ; * * * \mathrm{p}=<0.01$. F-test is based on robust standard errors according to White (1980).

Table C2 Two-sided t-test $H_{0}: \widehat{\delta_{k}^{L G S A}}=\widehat{\delta_{l}^{L G S A}}$ based on model (5b)

	$\delta_{2}^{L G S A}$	$\delta_{3}^{L G S A}$	$\delta_{4}^{L G S A}$	$\delta_{5}^{L G S A}$	$\delta_{6-8}^{L G S A}$	$\delta_{9+}^{L G S A}$
$\delta_{2}^{L G S A}$	-	$\begin{aligned} & \hline-1.379 \\ & (0.168) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-1.121 \\ & (0.262) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.229 \\ & (0.819) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-1.283 \\ & (0.200) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-2.198 * * \\ & (0.028) \\ & \hline \end{aligned}$
$\delta_{3}^{L G S A}$	$\begin{aligned} & \hline-1.379 \\ & (0.168) \\ & \hline \end{aligned}$		$\begin{aligned} & \hline-0.195 \\ & (0.845) \end{aligned}$	$\begin{aligned} & \hline-1.302 \\ & (0.193) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-3.451 \text { *** } \\ & (0.001) \\ & \hline \end{aligned}$	$\begin{aligned} & -4.457 * * * \\ & (0.000) \\ & \hline \end{aligned}$
$\delta_{4}^{L G S A}$	$\begin{array}{\|l\|} \hline-1.121 \\ (0.262) \\ \hline \end{array}$	$\begin{array}{\|l} \hline-0.195 \\ (0.845) \\ \hline \end{array}$	-	$\begin{aligned} & \hline-1.004 \\ & (0.315) \\ & \hline \end{aligned}$	$\begin{aligned} & -2.863 \text { *** } \\ & (0.004) \\ & \hline \end{aligned}$	$\begin{aligned} & -3.814 * * * \\ & (0.000) \\ & \hline \end{aligned}$
$\delta_{5}^{L G S A}$	$\begin{array}{\|c\|} \hline-0.229 \\ (0.819) \\ \hline \end{array}$	$\begin{aligned} & \hline-1.302 \\ & (0.193) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-1.004 \\ & (0.315) \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline-1.763 * \\ & (0.078) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline-2.774 * * * \\ \hline(0.006) \\ \hline \end{array}$
$\delta_{6-8}^{L G S A}$	$\begin{aligned} & \hline-1.283 \\ & (0.200) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-3.451 \text { *** } \\ & (0.001) \\ & \hline \end{aligned}$	$\begin{aligned} & -2.863 \text { *** } \\ & (0.004) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline-1.763 * \\ (0.078) \\ \hline \end{array}$	-	$\begin{aligned} & \hline-1.232 \\ & (0.218) \\ & \hline \end{aligned}$
$\delta_{9+}^{\text {LGSA }}$	$\begin{aligned} & -2.198 \text { ** } \\ & (0.028) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline-4.457 * * * \\ (0.000) \\ \hline \end{array}$	$\begin{aligned} & \hline-3.814 * * * \\ & (0.000) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline-2.774 * * * \\ (0.006) \\ \hline \end{array}$	$\begin{aligned} & \hline-1.232 \\ & (0.218) \\ & \hline \end{aligned}$	-

Note: Value of t-statistic reported with the respective p-value in parentheses. Asterisks indicate $* \mathrm{p}=<0.1 ; * * \mathrm{p}=<0.05 ; * * * \mathrm{p}=<0.01$.T-tests are based on robust standard errors according to White (1980).

Table C3 Test results for inequality restrictions $\delta_{2}^{L G S A} ; \delta_{3}^{L G S A} ; \delta_{4}^{L G S A} ; \delta_{5}^{L G S A}<\delta_{9+}^{L G S A}$

Step 1	Step 2
H_{0} : All restrictions hold in the population	H_{0} : All restrictions are equalities
$\delta_{2}^{\text {LGSA }} \leq \delta_{9+}^{\text {LGSA }}$;	$\delta_{2}^{\text {LGSA }}=\delta_{9+}^{\text {LGSA }}$;
$\delta_{3}^{L G S A} \leq \delta_{9+}^{L G S A}$;	$\delta_{3}^{L G S A}=\delta_{9+}^{L G S A} ;$
$\delta_{4}^{\text {LGSA }} \leq \delta_{9+}^{\text {LGSA }}$;	$\delta_{4}^{\text {LGSA }}=\delta_{9+}^{\text {LGSA }}$;
$\delta_{5}^{L G S A} \leq \delta_{9+}^{L G S A}$	$\delta_{5}^{L L S A A}=\delta_{9+}^{L G S A}$
H_{1} : At least one inequality is violated	H_{1} : At least one equality is violated
F-test statistic p -value 0.0000 1.0000	F-test statistic p-value $15.448^{* * *}$ 0.0017

Note: Asterisks indicate $* \mathrm{p}=<0.1 ; * * \mathrm{p}=<0.05 ; * * * \mathrm{p}=<0.01$. F-tests are based on robust standard errors according to White (1980).

Table C4 Test results for inequality restrictions $\delta_{2}^{L G S A} ; \delta_{3}^{L G S A} ; \delta_{4}^{L G S A} ; \delta_{5}^{L G S A}<\delta_{6-8}^{L G S A}$

Step 1	Step 2
$H_{0}:$ All restrictions hold in the population	$H_{0}:$ All restrictions are equalities
$\delta_{2}^{L G S A} \leq \delta_{9+}^{L G S A ;} ;$	$\delta_{2}^{L G S A}=\delta_{9+}^{L G S A ;}$
$\delta_{3}^{L G S A} \leq \delta_{9+}^{L G S A} ;$	$\delta_{3}^{L G S A}=\delta_{9+}^{L L S A} ;$
$\delta_{4}^{L G S A} \leq \delta_{9+}^{L G S A ;} ;$	$\delta_{4}^{L G S A}=\delta_{9+}^{L G S A} ;$
$\delta_{5}^{L G S A} \leq \delta_{9+}^{L G S A}$	$\delta_{5}^{L G S A}=\delta_{9+}^{L L S A}$
$H_{1}:$ At least one inequality is violated	$H_{1}:$ At least one equality is violated
F-test statistic p-value	F-test statistic \quad p-value
0.0000	1.0000

Note: Asterisks indicate $* \mathrm{p}=<0.1 ; * * \mathrm{p}=<0.05 ; * * * \mathrm{p}=<0.01$. F-tests are based on robust standard errors according to White (1980).

Table C5 Test results for inequality restrictions $\delta_{2}^{L G S A}<\delta_{3}^{L G S A}<\delta_{4}^{L G S A}<\delta_{5}^{L G S A}<\delta_{6-8}^{L G S A}<\delta_{9+}^{L G S A}$

Step 1	Step 2
H_{0} : All restrictions hold in the population	H_{0} : All restrictions are equalities
$\delta_{2}^{L G S A} \leq \delta_{3}^{L G S A}$	$\delta_{2}^{L G S A}=\delta_{3}^{L G S A} ;$
$\delta_{3}^{L G S A} \leq \delta_{4}^{L G S A}$;	$\delta_{3}^{L G S A}=\delta_{4}^{L G S A}$;
$\delta_{4}^{L G S A} \leq \delta_{5}^{L G S A}$;	$\delta_{4}^{L G S A}=\delta_{5}^{L G S A}$;
$\delta_{5}^{L G S A} \leq \delta_{6-8}^{L G S A}$	$\delta_{5}^{L G S A}=\delta_{6-8}^{L G S A}$
$\delta_{6-8}^{L G S A} \leq \delta_{9+}^{L G S A}$	$\delta_{6-8}^{L G S A}=\delta_{9+}^{L G S A}$
H_{1} : At least one inequality is violated	H_{1} : At least one equality is violated
F-test statistic p-value 2.6977 0.5105	F-test statistic p-value $18.4971^{* * *}$ 0.0001

Note: Asterisks indicate $* \mathrm{p}=<0.1 ; * * \mathrm{p}=<0.05 ; * * * \mathrm{p}=<0.01$. F-tests based on robust standard errors according to White (1980).

